32-bit Computer
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GB of RAM to be accessed; far more than previous generations of system architecture allowed. 32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Apple Macintosh. Fully 32-bit microprocessors such as the Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This generation of personal computers coincided wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Architecture
In computer engineering, computer architecture is a description of the structure of a computer system made from component parts. It can sometimes be a high-level description that ignores details of the implementation. At a more detailed level, the description may include the instruction set architecture design, microarchitecture design, logic design, and implementation. History The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine. When building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects that machine instructions could be stored in the same storage used for data, i.e., the stored-program concept. Two other early and important examples are: * John von Neumann's 1945 paper, First Draft of a Report on the EDVAC, which described an organization of logical elements; and *Alan Turing's more detailed ''Proposed Electronic Calculator'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4,294,967,295
The number 4,294,967,295 is an integer equal to 2 − 1. It is a perfect totient number. It follows 4,294,967,294 and precedes 4,294,967,296. It has a factorization of 3 \cdot 5 \cdot 17 \cdot 257 \cdot 65537. It is the highest unsigned 32-bit integer. In geometry Since the prime factors of 2 − 1 are exactly the five known Fermat primes, this number is the largest known odd value ''n'' for which a regular ''n''-sided polygon is constructible using compass and straightedge. Equivalently, it is the largest known odd number ''n'' for which the angle 2\pi/n can be constructed, or for which \cos(2\pi/n) can be expressed in terms of square roots. Not only is 4,294,967,295 the largest known odd number of sides of a constructible polygon, but since constructibility is related to factorization, the list of odd numbers ''n'' for which an ''n''-sided polygon is constructible begins with the list of factors of 4,294,967,295. If there are no more Fermat primes, then ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetic Logic Unit
In computing, an arithmetic logic unit (ALU) is a Combinational logic, combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed; the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers. Signals An ALU has a variety of input and output net (electronics), nets, which are the electrical conductors used to convey Digital signal (electronics), digi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electronic Circuit
An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical circuit and to be referred to as ''electronic'', rather than ''electrical'', generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another. Circuits can be constructed of discrete components connected by individual pieces of wire, but today it is much more common to create interconnections by photolithographic techniques on a laminated substrate (a printed circuit board or PCB) and solder the components to these interconnections to create a finished circuit. In an integrated circuit or IC, the components and interconnections are formed on t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Williams Tube
The Williams tube, or the Williams–Kilburn tube named after inventors Freddie Williams and Tom Kilburn, is an early form of computer memory. It was the first random-access digital storage device, and was used successfully in several early computers. The Williams tube works by displaying a grid of dots on a cathode-ray tube (CRT). Due to the way CRTs work, this creates a small charge of static electricity over each dot. The charge at the location of each of the dots is read by a thin metal sheet just in front of the display. Since the display faded over time, it was periodically refreshed. It operates faster than earlier acoustic delay-line memory, at the speed of the electrons inside the vacuum tube, rather than at the speed of sound. The system was adversely affected by nearby electrical fields, and required frequent adjustment to remain operational. Williams–Kilburn tubes were used primarily on high-speed computer designs. Williams and Kilburn applied for British patents ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof Of Concept
Proof of concept (POC or PoC), also known as proof of principle, is a realization of a certain method or idea in order to demonstrate its feasibility, or a demonstration in principle with the aim of verifying that some concept or theory has practical potential. A proof of concept is usually small and may or may not be complete. These collaborative trials aim to test feasibility of business concepts and proposals to solve business problems and accelerate business innovation goals. A proof of value (PoV) is sometimes used along proof of concept, and differs by focusing more on demonstrating the potential customers use case and value, and is usually less in-depth than a proof of concept. Usage history The term has been in use since 1967. In a 1969 hearing of the Committee on Science and Astronautics, Subcommittee on Advanced Research and Technology, ''proof of concept'' was defined as following: One definition of the term "proof of concept" was by Bruce Carsten in the context o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manchester Baby
The Manchester Baby, also called the Small-Scale Experimental Machine (SSEM), was the first electronic stored-program computer. It was built at the University of Manchester by Frederic Calland Williams, Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948. The Baby was not intended to be a practical computing engine, but was instead designed as a testbed for the Williams tube, the first truly random-access memory. Described as "small and primitive" 50 years after its creation, it was the first working machine to contain all the elements essential to a modern electronic digital computer. As soon as the Baby had demonstrated the feasibility of its design, a project was initiated at the university to develop it into a full scale operational machine, the . The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1, the world's first commercially available general-purpose computer. The Baby had a 32-bit Word (computer architect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electronic Computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of industrial and consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devices like personal computers and mobile devices like smartphones. Computers power the Internet, which links bil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Byte Addressing
Byte addressing in hardware architectures supports accessing individual bytes. Computers with byte addressing are sometimes called ''byte machines,'' in contrast to ''word-addressable'' architectures, ''word machines'', that access data by word. Background The basic unit of digital storage is a bit, storing a single 0 or 1. Many common architectures can address more than 8 bits of data at a time. For example, the Intel 386SX processor can handle 16-bit (two-byte) data, since data is transferred over a 16-bit bus. However, data in memory may be of various lengths. Byte addressable memory supports accessing data in units that are narrower than the bus. An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the bus, this is regarded as word-addressable. The 386SX, which addresses memory in 8-bit units but can fetch and store it 16 bits at a time, is termed byte-addressable. The advantage of word addressing is that more memory can be addre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gibibyte
The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as The Internet Protocol () refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The first bit is number 0, making the eighth bit number 7. The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Memory Address
In computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU (such as the instruction pointer and incremental address registers), as well upon use of the memory like an array endorsed by various programming languages. Types Physical addresses A digital computer's main memory consists of many memory locations. Each memory location has a physical address which is a code. The CPU (or other device) can use the code to access the corresponding memory location. Generally only system software, i.e. the BIOS, operating systems, and some specialized utility programs (e.g., memory testers), address physical memory using machine code operands or processor registers, instructing the CPU to direct a hardware device, called the memory controller, to use the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two's Complement
Two's complement is a mathematical operation to reversibly convert a positive binary number into a negative binary number with equivalent (but negative) value, using the binary digit with the greatest place value (the leftmost bit in big- endian numbers, rightmost bit in little-endian numbers) to indicate whether the binary number is positive or negative (the sign). It is used in computer science as the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. When the most significant bit is a one, the number is signed as negative. . Two's complement is executed by 1) inverting (i.e. flipping) all bits, then 2) adding a place value of 1 to the inverted number. For example, say the number −6 is of interest. +6 in binary is 0110 (the leftmost most significant bit is needed for the sign; positive 6 is not 110 because it would be interpreted as -2). Step one is to flip all bits, yielding 1001. St ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |