32-bit
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in a maximum of 32- bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GiB of RAM to be accessed, far more than previous generations of system architecture allowed. 32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Apple Macintosh. Fully 32-bit microprocessors such as the HP FOCUS, Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This gener ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
64-bit Computing
In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit central processing units (CPU) and arithmetic logic units (ALU) are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer. From the software perspective, 64-bit computing means the use of machine code with 64-bit virtual memory addresses. However, not all 64-bit instruction sets support full 64-bit virtual memory addresses; x86-64 and AArch64, for example, support only 48 bits of virtual address, with the remaining 16 bits of the virtual address required to be all zeros (000...) or all ones (111...), and several 64-bit instruction sets support fewer than 64 bits of physical memory address. The term ''64-bit'' also describes a generation of computers in which 64-bit processors are the norm. 64 bits is a Word (computer architecture), word size that defines ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
X86-64
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit extension of the x86 instruction set architecture, instruction set. It was announced in 1999 and first available in the AMD Opteron family in 2003. It introduces two new operating modes: 64-bit mode and compatibility mode, along with a new four-level paging mechanism. In 64-bit mode, x86-64 supports significantly larger amounts of virtual memory and physical memory compared to its 32-bit computing, 32-bit predecessors, allowing programs to utilize more memory for data storage. The architecture expands the number of general-purpose registers from 8 to 16, all fully general-purpose, and extends their width to 64 bits. Floating-point arithmetic is supported through mandatory SSE2 instructions in 64-bit mode. While the older x87 FPU and MMX registers are still available, they are generally superseded by a set of sixteen 128-bit Processor register, vector registers (XMM registers). Each of these vector registers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motorola 68000
The Motorola 68000 (sometimes shortened to Motorola 68k or m68k and usually pronounced "sixty-eight-thousand") is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector. The design implements a 32-bit instruction set, with 32-bit registers and a 16-bit internal data bus. The address bus is 24 bits and does not use memory segmentation, which made it easier to program for. Internally, it uses a 16-bit data arithmetic logic unit (ALU) and two more 16-bit ALUs used mostly for addresses, and has a 16-bit external data bus. For this reason, Motorola termed it a 16/32-bit processor. As one of the first widely available processors with a 32-bit instruction set, large unsegmented address space, and relatively high speed for the era, the 68k was a popular design through the 1980s. It was widely used in a new generation of personal computers with graphical user interfaces, including the Macintosh 128K, Amiga, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Microprocessor
A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, Clock signal, clock-driven, Processor register, register-based, digital integrated circuit that accepts binary code, binary data as input, processes it according to instruction (computing), instructions stored in its computer memory, memory, and provides results (also in binary form) as output. Microprocessors contain both combinational logic and sequential logic, sequential digital logic, and operate on numbers and symbols represented in the binary number system. The integration of a whole CPU on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
I386
The Intel 386, originally released as the 80386 and later renamed i386, is the third-generation x86 architecture microprocessor from Intel. It was the first 32-bit processor in the line, making it a significant evolution in the x86 architecture. Pre-production samples of the 386 were released to select developers in 1985, while mass production commenced in 1986. The 386 was the central processing unit (CPU) of many workstations and high-end personal computers of the time. The 386 began to fall out of public use starting with the release of the i486 processor in 1989, while in embedded systems the 386 remained in widespread use until Intel finally discontinued it in 2007. Compared to its predecessor the Intel 80286 ("286"), the 80386 added a three-stage instruction pipeline which it brings up to total of 6-stage instruction pipeline, extended the architecture from 16-bits to 32-bits, and added an on-chip memory management unit. This paging translation unit made it muc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motorola 68020
The Motorola 68020 is a 32-bit microprocessor from Motorola, released in 1984. A lower-cost version was also made available, known as the 68EC020. In keeping with naming practices common to Motorola designs, the 68020 is usually referred to as the "020", pronounced "oh-two-oh" or "oh-twenty". The 020 was in the market for a relatively short time. The Motorola 68030 was announced in September 1986 and began deliveries in the summer of 1987. Priced about the same as the 020 of the time, the 030 was significantly faster and quickly replaced in 020 in almost every use. History 68000 and 68010 At the time the Motorola 68000 was designed, Motorola's design and fabrication services were outdated. Although even small companies like MOS Technology and Zilog had moved on to silicon gate depletion mode NMOS logic on ever-larger semiconductor wafer, wafers, Motorola was still using metal gates and enhancement mode and their largest fab worked on 4-inch wafers long after most lines had moved ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Processor Register
A processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900. Almost all computers, whether load/store architecture or not, load items of data from a larger memory into registers where they are used for arithmetic operations, bitwise operations, and other operations, and are manipulated or tested by machine instructions. Manipulated items are then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either static or dynamic random-access memory (RAM) as main memory, with the latter usually accessed via one or more cache levels. Processor registers are normal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer (computer Science)
In computer science, an integer is a datum of integral data type, a data type that represents some interval (mathematics), range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor word size, register or memory address as an integer. Value and representation The ''value'' of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be ''unsigned'' (capable of representing only non-negative integers) or ''signed'' (capable of representing negative integers as well). An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2,147,483,647
The number 2147483647 is the eighth Mersenne prime, equal to 231 − 1. It is one of only four known double Mersenne primes. The primality of this number was proven by Leonhard Euler, who reported the proof in a letter to Daniel Bernoulli written in 1772. Euler used trial division, improving on Pietro Cataldi's method, so that at most 372 divisions were needed. It thus improved upon the previous record-holding prime, 6,700,417 – also discovered by Euler – forty years earlier. The number 2,147,483,647 remained the largest known prime until 1867. In computing, this number is the largest value that a signed 32-bit integer field can hold. Barlow's prediction At the time of its discovery, 2,147,483,647 was the largest known prime number. In 1811, Peter Barlow wrote (in ''An Elementary Investigation of the Theory of Numbers''): Euler ascertained that 231 − 1 = 2147483647 is a prime number; and this is the greatest at present known to be such, and, co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Byte Addressing
Byte addressing in hardware architectures supports accessing individual bytes. Computers with byte addressing are sometimes called byte machines, in contrast to '' word-addressable'' architectures, ''word machines'', that access data by word. Background The basic unit of digital storage is a bit, storing a single 0 or 1. Many common instruction set architectures can address more than 8 bits of data at a time. For example, 32-bit x86 processors have 32-bit general-purpose registers and can handle 32-bit (4-byte) data in single instructions. However, data in memory may be of various lengths. Instruction sets that support byte addressing supports accessing data in units that are narrower than the word length. An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4,294,967,295
The number 4,294,967,295 is a whole number equal to 2 − 1. It is a perfect totient number, meaning it is equal to the sum of its iterated totients. It follows 4,294,967,294 and precedes 4,294,967,296. It has a factorization of 3 \cdot 5 \cdot 17 \cdot 257 \cdot 65537. In computing, 4,294,967,295 is the highest unsigned (that is, not negative) 32-bit integer, which makes it the highest possible number a 32-bit system can store in memory. In geometry Since the prime factors of 2 − 1 are exactly the five known Fermat primes, this number is the largest known odd value ''n'' for which a regular ''n''-sided polygon is constructible using compass and straightedge. Equivalently, it is the largest known odd number ''n'' for which the angle 2\pi/n can be constructed, or for which \cos(2\pi/n) can be expressed in terms of square roots. Not only is 4,294,967,295 the largest known odd number of sides of a constructible polygon, but since constructibility is relat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minicomputer
A minicomputer, or colloquially mini, is a type of general-purpose computer mostly developed from the mid-1960s, built significantly smaller and sold at a much lower price than mainframe computers . By 21st century-standards however, a mini is an exceptionally large machine. Minicomputers in the traditional technical sense covered here are only small relative to generally even earlier and much bigger machines. The class formed a distinct group with its own software architectures and operating systems. Minis were designed for control, instrumentation, human interaction, and communication switching, as distinct from calculation and record keeping. Many were sold indirectly to original equipment manufacturers (OEMs) for final end-use application. During the two-decade lifetime of the minicomputer class (1965–1985), almost 100 minicomputer vendor companies formed. Only a half-dozen remained by the mid-1980s. When single-chip CPU microprocessors appeared in the 1970s, the defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |