HOME
*





248 (number)
248 (two hundred ndforty-eight) is the natural number following 247 and preceding 249. In mathematics 248 is: *a nontotient. *a refactorable number. *an untouchable number. *palindromic in bases 13 (16113), 30 (8830), 61 (4461) and 123 (22123). *a Harshad number in bases 3, 4, 6, 7, 9, 11, 13 (and 18 other bases). *part of the 43-aliquot tree. The aliquot sequence starting at 248 is: 248, 232, 218, 112, 136, 134, 70, 74, 40, 50, 43, 1, 0. The exceptional Lie group E8 has dimension 248. In religion *The number 248 is the Gematria value for the Hebrew letters Ramach (Resh Mem and Het), traditionally depicted as the number of organs in the human body, and the number of positive commandments in the Torah. It is also the number of words in the Jewish Shema Prayer, inclusive of בָּרוּךְ שֵׁם כְּבוֹד מַלְכוּתוֹ לְעוֹלָם וָעֶד (Ba-ruch sheim k'vod mal-chu-to l'o-lam va-ed) in response to the first verse, and the repetition of יְהֹוָ֥ה ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal numbers'', and numbers used for ordering are called ''ordinal numbers''. Natural numbers are sometimes used as labels, known as '' nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by succ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


247 (number)
247 (two hundred ndforty-seven) is the natural number following 246 and preceding 248. Additionally, 247 is: * a semiprime. * a brilliant number (the product of two primes with the same number of digits). * a pentagonal number A pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The .... * palindromic in base 18 (DD18). * a Harshad number in bases 10, 14, 19, 20, 27, 39, 40, 58, 77, 79, 115, 118, 229 and 235. * the smallest number which can be expressed as the difference between two integers that contain together all the decimal digits 0–9. i.e. 247 = 50123 - 49876. References {{Integers, 2 Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


249 (number)
249 (two hundred ndforty-nine) is the natural number following 248 and preceding 250. In mathematics 249 is: *a Blum integer. *a semiprime In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime .... *palindromic in bases 82 (3382). *a Harshad number in bases 3, 83, 84, 124, 167 and 247. *the aliquot sum of any of these numbers: 375, 531, 1687, 4351, 7807, 12127, 14647 and 15151. *part of the 3-aliquot tree. The aliquot sequence starting at 288 is: 288, 531, 249, 87, 33, 15, 9, 4, 3, 1, 0. References {{Integers, 2 Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nontotient
In number theory, a nontotient is a positive integer ''n'' which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(''x'') = ''n'' has no solution ''x''. In other words, ''n'' is a nontotient if there is no integer ''x'' that has exactly ''n'' coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions ''x'' = 1 and ''x'' = 2. The first few even nontotients are : 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, ... Least ''k'' such that the totient of ''k'' is ''n'' are (0 if no such ''k'' exists) :1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Refactorable Number
A refactorable number or tau number is an integer ''n'' that is divisible by the count of its divisors, or to put it algebraically, ''n'' is such that \tau(n)\mid n. The first few refactorable numbers are listed in as : 1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180, 184, 204, 225, 228, 232, 240, 248, 252, 276, 288, 296, ... For example, 18 has 6 divisors (1 and 18, 2 and 9, 3 and 6) and is divisible by 6. There are infinitely many refactorable numbers. Properties Cooper and Kennedy proved that refactorable numbers have natural density zero. Zelinsky proved that no three consecutive integers can all be refactorable. Colton proved that no refactorable number is perfect. The equation \gcd(n,x) = \tau(n) has solutions only if n is a refactorable number, where \gcd is the greatest common divisor function. Let T(x) be the number of refactorable numbers which are at most x. The problem of determining an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Untouchable Number
An untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer (including the untouchable number itself). That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi (circa 1000 AD), who observed that both 2 and 5 are untouchable. Examples For example, the number 4 is not untouchable as it is equal to the sum of the proper divisors of 9: 1 + 3 = 4. The number 5 is untouchable as it is not the sum of the proper divisors of any positive integer: 5 = 1 + 4 is the only way to write 5 as the sum of distinct positive integers including 1, but if 4 divides a number, 2 does also, so 1 + 4 cannot be the sum of all of any number's proper divisors (since the list of factors would have to contain both 4 and 2). The first few untouchable numbers are: : 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harshad Number
In mathematics, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977. Definition Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is a harshad number in base if: :X \equiv 0 \bmod . A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

E8 (mathematics)
In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled A''n'', B''n'', C''n'', D''n'', and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases. Basic description The Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is eight. Therefore, the vectors of the root system are in eight-dimensional Euclidean space: they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus which are induced by conjugations in the whole group, has order 2357 = . The compact group E8 is unique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbit
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion. For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pluto
Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest known trans-Neptunian object by volume, by a small margin, but is slightly less massive than Eris. Like other Kuiper belt objects, Pluto is made primarily of ice and rock and is much smaller than the inner planets. Compared to Earth's moon, Pluto has only one sixth its mass and one third its volume. Pluto has a moderately eccentric and inclined orbit, ranging from from the Sun. Light from the Sun takes 5.5 hours to reach Pluto at its average distance (). Pluto's eccentric orbit periodically brings it closer to the Sun than Neptune, but a stable orbital resonance prevents them from colliding. Pluto has five known moons: Charon, the largest, whose diameter is just over half that of Pluto; Styx; Nix; Kerberos; and Hydra. Pluto and C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


248 Lameia
Lameia ( minor planet designation: 248 Lameia) is a typical main belt asteroid. It was discovered by Austrian astronomer Johann Palisa on 5 June 1885 in Vienna and was named after the Lamia, a lover of Zeus in Ancient Greek mythology. 248 Lameia is orbiting the Sun with a period of and a low eccentricity (ovalness) of 0.067. The semimajor axis of is slightly inward from the 3:1 Kirkwood Gap. Its orbital plane is inclined by 4° to the plane of the ecliptic. On 27 June 1998 an occultation of the 8th magnitude star PPM 236753 (HD 188960) by 248 Lameia was timed by five observers near Gauteng, South Africa. The chords produced a rough size estimate of a ellipse. The size estimate based on IRAS Minor Planet Survey data is . The rotation rate of this object is commensurate with the rotation of the Earth, requiring observations from different locations to build a complete light curve. These yield a rotation estimate of with a brightness variation of magnitude in amplitude The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]