20,000
   HOME
*





20,000
20,000 (twenty thousand) is the natural number that comes after 19,999 and before 20,001. 20,000 is a round number, and is also in the title of Jules Verne's novel ''Twenty Thousand Leagues Under the Sea''. Selected numbers in the range 20001–29999 20001 to 20999 * 20002 = number of surface-points of a tetrahedron with edge-length 100 * 20100 = sum of the first 200 natural numbers (hence a triangular number) * 20160 = highly composite number; the smallest order belonging to two non-isomorphic simple groups: the alternating group ''A''8 and the Chevalley group ''A''2(4) * 20161 = the largest integer that cannot be expressed as a sum of two abundant numbers * 20230 = pentagonal pyramidal number * 20412 = Leyland number: 93 + 39 * 20540 = square pyramidal number * 20569 = tetranacci number * 20593 = unique prime in base 12 * 20597 = k such that the sum of the squares of the first k primes is divisible by k. * 20736 = 1442 = 124, 10000 12, palindromic in base 15 (622615) * 20793 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Twenty Thousand Leagues Under The Sea
''Twenty Thousand Leagues Under the Seas'' (french: Vingt mille lieues sous les mers) is a classic science fiction adventure novel by French writer Jules Verne. The novel was originally serialized from March 1869 through June 1870 in Pierre-Jules Hetzel's fortnightly periodical, the . A deluxe octavo edition, published by Hetzel in November 1871, included 111 illustrations by Alphonse de Neuville and Édouard Riou. The book was widely acclaimed on its release and remains so; it is regarded as one of the premier adventure novels and one of Verne's greatest works, along with '' Around the World in Eighty Days'' and ''Journey to the Center of the Earth''. Its depiction of Captain Nemo's underwater ship, the ''Nautilus'', is regarded as ahead of its time, since it accurately describes many features of today's submarines, which in the 1860s were comparatively primitive vessels. A model of the French submarine ''Plongeur'' (launched in 1863) figured at the 1867 Exposition Universe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base 12
The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead written as "10" in duodecimal (meaning "1 dozen and 0 units", instead of "1 ten and 0 units"), whereas the digit string "12" means "1 dozen and 2 units" (decimal 14). Similarly, in duodecimal, "100" means "1  gross", "1000" means "1 great gross", and "0.1" means "1 twelfth" (instead of their decimal meanings "1 hundred", "1 thousand", and "1 tenth", respectively). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duodecimal
The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead written as "10" in duodecimal (meaning "1 dozen and 0 units", instead of "1 ten and 0 units"), whereas the digit string "12" means "1 dozen and 2 units" (decimal 14). Similarly, in duodecimal, "100" means "1  gross", "1000" means "1 great gross", and "0.1" means "1 twelfth" (instead of their decimal meanings "1 hundred", "1 thousand", and "1 tenth", respectively). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Prime
The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum, as Leonhard Euler proved in 1737. Like all rational numbers, the reciprocals of primes have repeating decimal representations. In his later years, George Salmon (1819–1904) concerned himself with the repeating periods of these decimal representations of reciprocals of primes. Contemporaneously, William Shanks (1812–1882) calculated numerous reciprocals of primes and their repeating periods, and published two papers "On Periods in the Reciprocals of Primes" in 1873 and 1874. In 1874 he also published a table of primes, and the periods of their reciprocals, up to 20,000 (with help from and "communicated by the Rev. George Salmon"), and pointed out the errors in previous tables by three other authors. Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. For a prime , the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Highly Composite Number
__FORCETOC__ A highly composite number is a positive integer with more divisors than any smaller positive integer has. The related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. The late mathematician Jean-Pierre Kahane has suggested that Plato must have known about highly composite numbers as he deliberately chose 5040 as the ideal number of citizens in a city as 5040 has more divisors than any numbers less than it. Ramanujan wrote and titled his paper on the subject in 1915. Examples The initial or smallest 38 highly composite numbers are listed in the table below . The number of divisors is given in the column labeled ''d''(''n''). Asterisks indicate superior highly composite numbers. The divisors of the first 15 highly composite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gregorian Calendar
The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years differently so as to make the average calendar year 365.2425 days long, more closely approximating the 365.2422-day 'tropical' or 'solar' year that is determined by the Earth's revolution around the Sun. The rule for leap years is: There were two reasons to establish the Gregorian calendar. First, the Julian calendar assumed incorrectly that the average solar year is exactly 365.25 days long, an overestimate of a little under one day per century, and thus has a leap year every four years without exception. The Gregorian reform shortened the average (calendar) year by 0.0075 days to stop the drift of the calendar with respect to the equinoxes.See Wikisource English translation of the (Latin) 1582 papal bull '' Inter gravissimas''. Second, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Repunit Prime
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Woodall Number
In number theory, a Woodall number (''W''''n'') is any natural number of the form :W_n = n \cdot 2^n - 1 for some natural number ''n''. The first few Woodall numbers are: :1, 7, 23, 63, 159, 383, 895, … . History Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917, inspired by James Cullen's earlier study of the similarly defined Cullen numbers. Woodall primes Woodall numbers that are also prime numbers are called Woodall primes; the first few exponents ''n'' for which the corresponding Woodall numbers ''W''''n'' are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... ; the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... . In 1976 Christopher Hooley showed that almost all Cullen numbers are composite. In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to factorise other Cullen and Woodall numbers. Included in that paper is a personal communication to Kel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cuban Prime
A cuban prime is a prime number that is also a solution to one of two different specific equations involving differences between third powers of two integers ''x'' and ''y''. First series This is the first of these equations: :p = \frac,\ x = y + 1,\ y>0, i.e. the difference between two successive cubes. The first few cuban primes from this equation are : 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227 The formula for a general cuban prime of this kind can be simplified to 3y^2 + 3y + 1. This is exactly the general form of a centered hexagonal number; that is, all of these cuban primes are centered hexagonal. the largest known has 65537 digits with y = 100000845^, found by Jens Kruse Andersen. Second series The second of these equations is: :p = \frac,\ x = y + 2,\ y>0. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kaprekar Number
In mathematics, a natural number in a given number base is a p-Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has p digits, that add up to the original number. The numbers are named after D. R. Kaprekar. Definition and properties Let n be a natural number. We define the Kaprekar function for base b > 1 and power p > 0 F_ : \mathbb \rightarrow \mathbb to be the following: :F_(n) = \alpha + \beta, where \beta = n^2 \bmod b^p and :\alpha = \frac A natural number n is a p-Kaprekar number if it is a fixed point for F_, which occurs if F_(n) = n. 0 and 1 are trivial Kaprekar numbers for all b and p, all other Kaprekar numbers are nontrivial Kaprekar numbers. For example, in base 10, 45 is a 2-Kaprekar number, because : \beta = n^2 \bmod b^p = 45^2 \bmod 10^2 = 25 : \alpha = \frac = \frac = 20 : F_(45) = \alpha + \beta = 20 + 25 = 45 A natural number n is a sociable Kaprekar number if it is a periodic point for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Repdigit
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system (often implicitly decimal). The word is a portmanteau of repeated and digit. Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes (which are repdigits when represented in binary). Repdigits are the representation in base B of the number x\frac where 0 1 and ''n'', ''m'' > 2 : **(''p'', ''x'', ''y'', ''m'', ''n'') = (31, 5, 2, 3, 5) corresponding to 31 = 111112 = 1115, and, **(''p'', ''x'', ''y'', ''m'', ''n'') = (8191, 90, 2, 3, 13) corresponding to 8191 = 11111111111112 = 11190, with 11111111111 is the repunit with thirteen digits 1. *For each sequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]