HOME
*



picture info

2 22 Honeycomb
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol . It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex. Its vertex arrangement is the '' E6 lattice'', and the root system of the E6 Lie group so it can also be called the E6 honeycomb. Construction It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 6-dimensional space. The facet information can be extracted from its Coxeter–Dynkin diagram, . Removing a node on the end of one of the 2-node branches leaves the 221, its only facet type, The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 122, . The edge figure is the vertex figure of the vertex figure, here being a birectified 5-simplex, ''t''2, . The face figure is the vertex figure of the edge figure, here being a triangular duoprism, × ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform 7-polytope
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets. A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes. Regular 7-polytopes Regular 7-polytopes are represented by the Schläfli symbol with u 6-polytopes facets around each 4-face. There are exactly three such convex regular 7-polytopes: # - 7-simplex # - 7-cube # - 7-orthoplex There are no nonconvex regular 7-polytopes. Characteristics The topology of any given 7-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex T2
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root System
In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors Linear span, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




E6 Lattice
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol . It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex. Its vertex arrangement is the '' E6 lattice'', and the root system of the E6 Lie group so it can also be called the E6 honeycomb. Construction It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 6-dimensional space. The facet information can be extracted from its Coxeter–Dynkin diagram, . Removing a node on the end of one of the 2-node branches leaves the 221, its only facet type, The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 122, . The edge figure is the vertex figure of the vertex figure, here being a birectified 5-simplex, ''t''2, . The face figure is the vertex figure of the edge figure, here being a triangular duoprism, &ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same ''vertex arrangement'' if they share the same 0-skeleton In mathematics, particularly in algebraic topology, the of a topological space presented as a simplicial complex (resp. CW complex) refers to the subspace that is the union of the simplices of (resp. cells of ) of dimensions In other wo .... A group of polytopes that shares a vertex arrangement is called an ''army''. Vertex arrangement The same set of vertices can be connected by edges in different ways. For example, the ''pentagon'' and ''pentagram'' have the same ''vertex arrangement'', while the second connects alternate vertices. A ''vertex arrangement'' is often described by the convex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 22 Polytope
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 (mathematics), E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices). Its Coxeter symbol is 122, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. There are two rectifications of the 122, constructed by positions points on the elements of 122. The rectified 122 is constructed by points at the mid-edges of the 122. The birectified 122 is constructed by points at the triangle face centers of the 122. These polytopes are from a family of 39 convex uniform 6-polytope, uniform polytopes in 6-dimensions, made of uniform 5-polytope, uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: . 122 polytope The 122 polytope contains 72 vertices, and 54 5-demicube, 5-demicubic facets. It has a birectified 5-simplex vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Facet (geometry)
In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically: * In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a ''face''. To ''facet'' a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to '' stellation'' and may also be applied to higher-dimensional polytopes. * In polyhedral combinatorics and in the general theory of polytopes, a facet (or hyperface) of a polytope of dimension ''n'' is a face that has dimension ''n'' − 1. Facets may also be called (''n'' − 1)-faces. In three-dimensional geometry, they are often called "faces" without qualification. * A facet of a simplicial complex is a maximal simplex, that is a simplex that is not a face of another simplex of the complex.. For (boundary complexes of) sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Honeycomb
In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as -honeycomb for an -dimensional honeycomb. An -dimensional uniform honeycomb can be constructed on the surface of -spheres, in -dimensional Euclidean space, and -dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation. Nearly all uniform tessellations can be generated by a Wythoff construction, and represented by a Coxeter–Dynkin diagram. The terminology for the convex uniform polytopes used in uniform polyhedron, uniform 4-polytope, uniform 5-polytope, uniform 6-polytope, uniform tiling, and convex uniform honeycomb articles were coined by Norman Johnson. Wythoffian tessellations can be defined by a vertex figure. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Facet-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be ''transitive'', i.e. must lie within the same ''symmetry orbit''. In other words, for any two faces and , there must be a symmetry of the ''entire'' figure by translations, rotations, and/or reflections that maps onto . For this reason, convex isohedral polyhedra are the shapes that will make fair dice. Isohedral polyhedra are called isohedra. They can be described by their face configuration. An isohedron has an Parity (mathematics), even number of faces. The Dual polyhedron, dual of an isohedral polyhedron is vertex-transitive, i.e. isogonal. The Catalan solids, the bipyramids, and the trapezohedra are all isohedral. They are the duals of the (isogonal) Archimedean solids, Prism (geometry), prisms, and antiprisms, resp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex-transitive
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces. Technically, one says that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope '' acts transitively'' on its vertices, or that the vertices lie within a single '' symmetry orbit''. All vertices of a finite -dimensional isogonal figure exist on an -sphere. The term isogonal has long been used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups and graph theory. The pseudorhombicuboctahedronwhich is ''not'' isogonaldemonstrates that simply asserting that "all vertices look the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]