2939 (number)
   HOME
*





2939 (number)
2000 (two thousand) is a natural number following 1999 and preceding 2001. It is: :*the highest number expressible using only two unmodified characters in Roman numerals (MM) :*an Achilles number :*smallest four digit eban number Selected numbers in the range 2001–2999 2001 to 2099 * 2001 – sphenic number * 2002 – palindromic number * 2003 – Sophie Germain prime and the smallest prime number in the 2000s * 2004 – Area of the 24tcrystagon* 2005 – A vertically symmetric number * 2006 – number of subsets of with relatively prime elements * 2007 – 22007 + 20072 is prime * 2008 – number of 4 X 4 matrices with nonnegative integer entries and row and column sums equal to 3 * 2009 = 74 − 73 − 72 * 2010 – number of compositions of 12 into relatively prime parts * 2011 – Sexy prime with 2017, sum of eleven consecutive primes: 2011 = 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 * 2012 – The number 8 × 102012 − 1 is a prime number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totient
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the RSA en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mersenne Number
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If is a composite number then so is . Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form for some prime . The exponents which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... and the resulting Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... . Numbers of the form without the primality requirement may be called Mersenne numbers. Sometimes, however, Mersenne numbers are defined to have the additional requirement that be prime. The smallest composite Mersenne number with prime exponent ''n'' is . Mersenne primes were studied in antiquity because of their close connection to perfect numbers: the Euclid–Euler theorem ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centered Octahedral Number
A centered octahedral number or Haüy octahedral number is a figurate number that counts the number of points of a three-dimensional integer lattice that lie inside an octahedron centered at the origin. The same numbers are special cases of the Delannoy numbers, which count certain two-dimensional lattice paths. The Haüy octahedral numbers are named after René Just Haüy. History The name "Haüy octahedral number" comes from the work of René Just Haüy, a French mineralogist active in the late 18th and early 19th centuries. His "Haüy construction" approximates an octahedron as a polycube, formed by accreting concentric layers of cubes onto a central cube. The centered octahedral numbers count the number of cubes used by this construction. Haüy proposed this construction, and several related constructions of other polyhedra, as a model for the structure of crystalline minerals.. See in particulapp. 13–14 As cited by Formula The number of three-dimensional lattice po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decagonal Number
A decagonal number is a figurate number that extends the concept of triangular and square numbers to the decagon (a ten-sided polygon). However, unlike the triangular and square numbers, the patterns involved in the construction of decagonal numbers are not rotationally symmetrical. Specifically, the ''n''th decagonal numbers counts the number of dots in a pattern of ''n'' nested decagons, all sharing a common corner, where the ''i''th decagon in the pattern has sides made of ''i'' dots spaced one unit apart from each other. The ''n''-th decagonal number is given by the following formula : D_n = 4n^2 - 3n. The first few decagonal numbers are: : 0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326 The ''n''th decagonal number can also be calculated by adding the square of '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Woodall Number
In number theory, a Woodall number (''W''''n'') is any natural number of the form :W_n = n \cdot 2^n - 1 for some natural number ''n''. The first few Woodall numbers are: :1, 7, 23, 63, 159, 383, 895, … . History Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917, inspired by James Cullen's earlier study of the similarly defined Cullen numbers. Woodall primes Woodall numbers that are also prime numbers are called Woodall primes; the first few exponents ''n'' for which the corresponding Woodall numbers ''W''''n'' are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... ; the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... . In 1976 Christopher Hooley showed that almost all Cullen numbers are composite. In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to factorise other Cullen and Woodall numbers. Included in that paper is a personal communication to Kel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Super-Poulet Number
A super-Poulet number is a Poulet number, or pseudoprime to base 2, whose every divisor ''d'' divides :2''d'' − 2. For example, 341 is a super-Poulet number: it has positive divisors and we have: :(211 - 2) / 11 = 2046 / 11 = 186 :(231 - 2) / 31 = 2147483646 / 31 = 69273666 :(2341 - 2) / 341 = 13136332798696798888899954724741608669335164206654835981818117894215788100763407304286671514789484550 When \frac is not prime, then it and every divisor of it are a pseudoprime to base 2, and a super-Poulet number. The super-Poulet numbers below 10,000 are : Super-Poulet numbers with 3 or more distinct prime divisors It is relatively easy to get super-Poulet numbers with 3 distinct prime divisors. If you find three Poulet numbers with three common prime factors, you get a super-Poulet number, as you built the product of the three prime factors. Example: 2701 = 37 * 73 is a Poulet number, 4033 = 37 * 109 is a Poulet number, 7957 = 73 * 109 is a Poulet number; so 294409 = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centered Pentagonal Number
A centered pentagonal number is a centered figurate number that represents a pentagon with a dot in the center and all other dots surrounding the center in successive pentagonal layers. The centered pentagonal number for ''n'' is given by the formula :P_=, n\geq1 The first few centered pentagonal numbers are 1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, 2806, 2976 . Properties *The parity of centered pentagonal numbers follows the pattern odd-even-even-odd, and in base 10 the units follow the pattern 1-6-6-1. *Centered pentagonal numbers follow the following Recurrence relations: :P_=P_+5n , P_0=1 :P_=3(P_-P_)+P_ , P_0=1,P_1=6,P_2=16 *Centered pentagonal numbers can be expressed using Triangular Numbers: :P_=5T_+1 See also *Pentagonal number *Polygonal number *Centered polygonal number The centered polygonal numbers are a class of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mian–Chowla Sequence
In mathematics, the Mian–Chowla sequence is an integer sequence defined recursion, recursively in the following way. The sequence starts with :a_1 = 1. Then for n>1, a_n is the smallest integer such that every pairwise sum :a_i + a_j is distinct, for all i and j less than or equal to n. Properties Initially, with a_1, there is only one pairwise sum, 1 + 1 = 2. The next term in the sequence, a_2, is 2 since the pairwise sums then are 2, 3 and 4, i.e., they are distinct. Then, a_3 can't be 3 because there would be the non-distinct pairwise sums 1 + 3 = 2 + 2 = 4. We find then that a_3 = 4, with the pairwise sums being 2, 3, 4, 5, 6 and 8. The sequence thus begins :1 (number), 1, 2 (number), 2, 4 (number), 4, 8 (number), 8, 13 (number), 13, 21 (number), 21, 31 (number), 31, 45 (number), 45, 66 (number), 66, 81 (number), 81, 97 (number), 97, 123 (number), 123, 148 (number), 148, 182 (number), 182, 204 (number), 204,252 (number), 252, 290 (number), 290, 361, 401, 475, ... . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Safe Prime
In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let ''p'' be a prime number of the form 8''k'' + 7 and to let ''n'' = ''p'' – 1. In this case, x^n + y^n = z^n is unsolvable. Germain’s proof, however, remained unfinished. Through her attempts to solve Fermat's Last Theorem, Germain developed a result now known as Germain's Theorem which states that if ''p'' is an odd prime and 2''p'' + 1 is also prime, then ''p'' must divide ''x'', ''y'', or ''z.'' Otherwise, x^n + y^n \neq z^n. This case where ''p'' does not divide ''x'', ''y'', or ''z'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Super-prime
Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. The subsequence begins :3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, ... . That is, if ''p''(''n'') denotes the ''n''th prime number, the numbers in this sequence are those of the form ''p''(''p''(''n'')). used a computer-aided proof (based on calculations involving the subset sum problem The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S of integers and a target-sum T, and the question is to decide whether any subset of the integers sum to precisely T''.'' T ...) to show that every integer greater than 96 may be represented as a sum of distinct super-prime numbers. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]