HOME
*





21 Comae Berenices
21 Comae Berenices is a variable star in the northern constellation of Coma Berenices. It has the variable star designation UU Comae Berenices, while 21 Comae Berenices is the Flamsteed designation. About According to R. H. Allen, English orientalist Thomas Hyde attributed the ancient title Kissīn to this star, a name that comes from a climbing plant – either bindweed or dog rose. This star has a white hue and is just visible to the naked eye with an apparent visual magnitude that fluctuates around 5.47. Based upon parallax measurements, it is located at a distance of approximately 270 light years away from the Sun. It is a single star but is a confirmed physical member of the Melotte 111 open cluster. History This object has been studied extensively since 1953, producing some occasionally contradictory results such as hints of pulsational behavior or a binary companion. It is a weakly magnetic chemically peculiar star of type CP2, or Ap star, that is m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dog Rose
''Rosa canina'', commonly known as the dog rose, is a variable climbing, wild rose species native to Europe, northwest Africa, and western Asia. Description The dog rose is a deciduous shrub normally ranging in height from , though sometimes it can scramble higher into the crowns of taller trees. Its stems are covered with small, sharp, hooked prickles, which aid it in climbing. The leaves are pinnate, with 5–7 leaflets. Leaves have a delicious fragrance, when bruised. The dog rose blooms from June to July, with sweet scented flowers which are usually pale pink, but can vary between a deep pink and white. They are in diameter with five petals. As other roses it has a quintuscial aestivation (see sketch A in diagram). Unusually though of its five sepals, when viewed from underneath two are whiskered on both sides, two are quite smooth and one is whiskered (or bearded) on one side only. Flowers mature into an oval, , red-orange hip. The dog rose is hardy to zone 3 in the UK ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star Spot
Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in general much larger than those on the Sun: up to about 30% of the stellar surface may be covered, corresponding to starspots 100 times larger than those on the Sun. Detection and measurements To detect and measure the extent of starspots one uses several types of methods. *For rapidly rotating stars – Doppler imaging and Zeeman-Doppler imaging. With the Zeeman-Doppler imaging technique the direction of the magnetic field on stars can be determined since spectral lines are split according to the Zeeman effect, revealing the direction and magnitude of the field. *For slowly rotating stars – Line Depth Ratio (LDR). Here one measures two different spectral lines, one sensitive to temperature and one which is not. Since starspots have a low ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iron-peak Element
The iron peak is a local maximum in the vicinity of Iron, Fe (Chromium, Cr, Manganese, Mn, Fe, Cobalt, Co and Nickel, Ni) on the graph of the abundances of the chemical elements. For elements lighter than iron on the periodic table, nuclear fusion exothermic, releases energy. For iron, and for all of the heavier elements, nuclear fusion endothermic, consumes energy. Chemical elements up to the iron peak are produced in ordinary stellar nucleosynthesis, with the alpha elements being particularly abundant. Some heavier elements are produced by less efficient processes such as the r-process and s-process. Elements with atomic numbers close to iron are produced in large quantities in supernova due to explosive oxygen and silicon fusion, followed by radioactive decay of nuclei such as Nickel-56. On average, heavier elements are less abundant in the universe, but some of those near iron are comparatively more abundant than would be expected from this trend. Binding energy A graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Classification
In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction grating into a spectrum exhibiting the Continuum (spectrum), rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Main Sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hertzsprung and Henry Norris Russell. Stars on this band are known as main-sequence stars or dwarf stars. These are the most numerous true stars in the universe and include the Sun. After condensation and ignition of a star, it generates thermal energy in its dense core region through nuclear fusion of hydrogen into helium. During this stage of the star's lifetime, it is located on the main sequence at a position determined primarily by its mass but also based on its chemical composition and age. The cores of main-sequence stars are in hydrostatic equilibrium, where outward thermal pressure from the hot core is balanced by the inward pressure of gravitational collapse from the overlying layers. The strong dependence of the rate of energy ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ap And Bp Stars
Ap and Bp stars are chemically peculiar stars (hence the "p") of spectral types A and B which show overabundances of some metals, such as strontium, chromium and europium. In addition, larger overabundances are often seen in praseodymium and neodymium. These stars have a much slower rotation than normal for A and B-type stars, although some exhibit rotation velocities up to about 100 kilometers per second. Magnetic fields Ap and Bp stars have stronger magnetic fields than classical A- or B-type stars; in the case of HD 215441, reaching 33.5 k G (3.35  T). Typically the magnetic field of these stars lies in the range of a few kG to tens of kG. In most cases a field which is modelled as a simple dipole is a good approximation and provides an explanation as to why there is an apparent periodic variation in the magnetic field, as if such a field is not aligned with the rotation axis—the field strength will change as the star rotates. In support of this theory it has bee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chemically Peculiar Star
In astrophysics, chemically peculiar stars (CP stars) are stars with distinctly unusual Metallicity, metal abundances, at least in their surface layers. Classification Chemically peculiar stars are common among hot main-sequence (hydrogen-burning) stars. These hot peculiar stars have been divided into 4 main classes on the basis of their spectra, although two classification systems are sometimes used: * non-magnetic metallic-lined star, metallic-lined (Am, CP1) * Ap and Bp stars, magnetic (Ap, CP2) * non-magnetic mercury-manganese star, mercury-manganese (HgMn, CP3) * Helium-weak star, helium-weak (He-weak, CP4). The class names provide a good idea of the peculiarities that set them apart from other stars on or near the main sequence. The Am stars (CP1 stars) show weak lines of singly ionized Calcium, Ca and/or Scandium, Sc, but show enhanced abundances of heavy metals. They also tend to be slow rotators and have an effective temperature between 7000 and . The Ap stars (CP2 sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectroscopic Binary
A binary star is a system of two star, stars that are gravity, gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in which case they are called ''visual binaries''. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (''spectroscopic binaries'') or astrometry (''astrometric binaries''). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit (astronomy), transit each other; these pairs are called ''eclipsing binaries'', or, together with other binaries that change brightness as they orbit, ''photometric binaries''. If components in binary star systems are close enough they can gravitationally distort their mutual outer stella ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pulsating Variable
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: * Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. * Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of the Sun, for example, varies by about 0.1% over an 11-year solar cycle. Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol. Of the modern astronomers, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Cluster
An open cluster is a type of star cluster made of up to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. They are loosely bound by mutual gravity, gravitational attraction and become disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a migration to the main body of the galaxy and a loss of cluster members through internal close encounters. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral galaxy, spiral and irregular galaxy, irregular galaxies, in which active star formation is o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coma Star Cluster
The Coma Star Cluster (also known as Melotte 111 or Collinder 256) is a small but nearby open cluster located in the constellation Coma Berenices. The cluster contains about 40 brighter stars (between magnitudes 5 and 10) with a common proper motion. The brighter stars of the cluster make out a distinctive "V" shape as seen when Coma Berenices is rising. The cluster used to represent the tail of Leo. However, in around 240 BC, Ptolemy III renamed it for the Egyptian queen Berenice's legendary sacrifice of her hair. The '' Hipparcos'' satellite and infrared color-magnitude diagram fitting have been used to establish a distance to the cluster's center of approximately . The distance established via the independent analyses agree, thereby making the cluster an important rung on the cosmic distance ladder. The open cluster is roughly twice as distant as the Hyades and covers an area of more than 7.5 degrees on the sky. The cluster is approximately 450 million years old. See a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]