2-gon
   HOME
*



picture info

2-gon
In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space. A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol . It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated ''digon'', t is a square, . An alternated digon, h is a monogon, . In Euclidean geometry The digon can have one of two visual representations if placed in Euclidean space. One representation is degenerate, and visually appears as a double-covering of a line segment. Appearing when the minimum distance between the two edges is 0, this form arises in several situations. This double-covering form is sometimes used for defining degener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hosohedron
In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular -gonal hosohedron has Schläfli symbol with each spherical lune having internal angle radians ( degrees). Hosohedra as regular polyhedra For a regular polyhedron whose Schläfli symbol is , the number of polygonal faces is : :N_2=\frac. The Platonic solids known to antiquity are the only integer solutions for ''m'' ≥ 3 and ''n'' ≥ 3. The restriction ''m'' ≥ 3 enforces that the polygonal faces must have at least three sides. When considering polyhedra as a spherical tiling, this restriction may be relaxed, since digons (2-gons) can be represented as spherical lunes, having non-zero area. Allowing ''m'' = 2 makes :N_2=\frac=n, and admits a new infinite class of regular polyhedra, which are the hosohedra. On a spherical surface, the polyhedron is represented as ''n'' abutting lunes, with interior ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Polygon
In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either convex polygon, convex, star polygon, star or Skew polygon, skew. In the limit (mathematics), limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a Line (geometry), straight line), if the edge length is fixed. General properties ''These properties apply to all regular polygons, whether convex or star polygon, star.'' A regular ''n''-sided polygon has rotational symmetry of order ''n''. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monogon
In geometry, a monogon, also known as a henagon, is a polygon with one edge and one vertex. It has Schläfli symbol .Coxeter, ''Introduction to geometry'', 1969, Second edition, sec 21.3 ''Regular maps'', p. 386-388 In Euclidean geometry In Euclidean geometry a ''monogon'' is a degenerate polygon because its endpoints must coincide, unlike any Euclidean line segment. Most definitions of a polygon in Euclidean geometry do not admit the monogon. In spherical geometry In spherical geometry, a monogon can be constructed as a vertex on a great circle (equator). This forms a dihedron, , with two hemispherical monogonal faces which share one 360° edge and one vertex. Its dual, a hosohedron, has two antipodal vertices at the poles, one 360° lune face, and one edge ( meridian) between the two vertices. See also * Digon References * Herbert Busemann Herbert Busemann (12 May 1905 – 3 February 1994) was a German-American mathematician specializing in convex and differential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Polyhedron
In geometry, a spherical polyhedron or spherical tiling is a tessellation, tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. Much of the theory of symmetrical polyhedron, polyhedra is most conveniently derived in this way. The most familiar spherical polyhedron is the Ball (association football), soccer ball, thought of as a spherical truncated icosahedron. The next most popular spherical polyhedron is the beach ball, thought of as a hosohedron. Some #Improper_cases, "improper" polyhedra, such as hosohedron, hosohedra and their dual polyhedron, duals, dihedron, dihedra, exist as spherical polyhedra, but their flat-faced analogs are Degeneracy (mathematics), degenerate. The example hexagonal beach ball, is a hosohedron, and is its dual dihedron. History The first known man-made polyhedra are spherical polyhedra stone carving, carved in stone. Many have been found in Scotland, and appear to date fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Antipodal Points
In mathematics, antipodal points of a sphere are those diametrically opposite to each other (the specific qualities of such a definition are that a line drawn from the one to the other passes through the center of the sphere so forms a true diameter). This term applies to opposite points on a circle or any n-sphere. An antipodal point is sometimes called an antipode, a back-formation from the Greek loan word ''antipodes'', meaning "opposite (the) feet", as the true word singular is ''antipus''. Theory In mathematics, the concept of ''antipodal points'' is generalized to spheres of any dimension: two points on the sphere are antipodal if they are opposite ''through the centre''; for example, taking the centre as origin, they are points with related vectors v and −v. On a circle, such points are also called diametrically opposite. In other words, each line through the centre intersects the sphere in two points, one for each ray out from the centre, and these two po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions. Definition Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Face (geometry)
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, the term is also used to mean an element of any dimension of a more general polytope (in any number of dimensions).. Polygonal face In elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include polyhedron side and Euclidean plane ''tile''. For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, each sharing two of 8 cubic cells. Number of polygonal faces of a polyhedron Any convex polyhedron's surface has Euler characteristic :V - E + F = 2, where ''V'' is the number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Near Uniform Polyhedron-43-t0
NEAR or Near may refer to: People * Thomas J. Near, US evolutionary ichthyologist * Near, a developer who created the higan emulator Science, mathematics, technology, biology, and medicine * National Emergency Alarm Repeater (NEAR), a former alarm device to warn civilians of a foreign nuclear attack on the United States * National Emergency Airway Registry (NEAR), a patient registry for intubations in the United States * Nicking enzyme amplification reaction (NEAR), a method of DNA amplification * NEAR Shoemaker, a spacecraft that studied the near-Earth asteroid Eros * Nearness or proximity space *"Near", a city browser by NearGlobal Television, film, music, and books * Near (Death Note), ''Nate River'', a character Other uses * Near v. Minnesota, a U.S. press freedom Supreme Court decision * New England Auto Racers Hall of Fame The New England Auto Racers Hall of Fame is a hall of fame for racing-related people in the New England region of the United States. NEAR was e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Constructible Polygon
In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Conditions for constructibility Some regular polygons are easy to construct with compass and straightedge; others are not. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.Bold, Benjamin. ''Famous Problems of Geometry and How to Solve Them'', Dover Publications, 1982 (orig. 1969). This led to the question being posed: is it possible to construct ''all'' regular polygons with compass and straightedge? If not, which ''n''-gons (that is, polygons with ''n'' edges) are constructible and which are not? Carl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same ''vertex arrangement'' if they share the same 0-skeleton In mathematics, particularly in algebraic topology, the of a topological space presented as a simplicial complex (resp. CW complex) refers to the subspace that is the union of the simplices of (resp. cells of ) of dimensions In other wo .... A group of polytopes that shares a vertex arrangement is called an ''army''. Vertex arrangement The same set of vertices can be connected by edges in different ways. For example, the ''pentagon'' and ''pentagram'' have the same ''vertex arrangement'', while the second connects alternate vertices. A ''vertex arrangement'' is often described by the convex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order-2 Apeirogonal Tiling
In geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedronConway (2008), p. 263 is a tiling of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol Two apeirogons, joined along all their edges, can completely fill the entire plane as an apeirogon is infinite in size and has an interior angle of 180°, which is half of a full 360°. Related tilings and polyhedra The apeirogonal tiling is the arithmetic limit of the family of dihedra , as ''p'' tends to infinity, thereby turning the dihedron into a Euclidean tiling. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apeirogonal Hosohedron
In geometry, an apeirogonal hosohedron or infinite hosohedronConway (2008), p. 263 is a tiling of the plane consisting of two vertices at infinity. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol Related tilings and polyhedra The apeirogonal hosohedron is the arithmetic limit of the family of hosohedra , as ''p'' tends to infinity, thereby turning the hosohedron into a Euclidean tiling. All the vertices have then receded to infinity and the digonal faces are no longer defined by closed circuits of finite edges. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]