1714 Sy
   HOME
*





1714 Sy
1714 Sy, provisional designation , is a stony asteroid from the central regions of the asteroid belt, approximately 13 kilometers in diameter. It was discovered on 25 July 1951, by French astronomer Louis Boyer at Algiers Observatory in Algeria, North Africa, and named after French astronomer and orbit computer Frédéric Sy. Orbit ''Sy'' orbits the Sun in the central main-belt at a distance of 2.2–3.0  AU once every 4 years and 1 month (1,503 days). Its orbit has an eccentricity of 0.15 and an inclination of 8 ° with respect to the ecliptic. It was first identified as at Goethe Link Observatory in 1948, extending the body's observation arc by 3 years prior to its official discovery observation at Algiers. Physical characteristics PanSTARRS large-scale survey characterized ''Sy'' as a L-type asteroid, a rare subtype which falls into the broader complex of stony S-type asteroids. Diameter and albedo According to the survey carried out by NASA's Wide-field Infra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Louis Boyer (astronomer)
Louis Boyer (1901–1999) was a French astronomer who worked at the Algiers Observatory, North Africa, where he discovered 40 asteroids between 1930 and 1952. In the 1950s and 1960s. he worked on identifications of small Solar System bodies at Nice Observatory in southeastern France. The asteroid 1215 Boyer, discovered by his colleague Alfred Schmitt at Algiers in 1932, was named after him. In turn Boyer named the 1617 Alschmitt asteroid in honor of Schmitt. Boyer also named 1713 Bancilhon after Odette Bancilhon his colleague and wife of astronomer Alfred Schmitt. References 20th-century French astronomers Discoveries by Louis Boyer (astronomer), * 1901 births 1999 deaths Discoverers of asteroids Recipients of the Lalande Prize {{france-astronomer-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Observation Arc
In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly used in the discovery and tracking of asteroids and comets. Arc length has the greatest influence on the accuracy of an orbit. The number and spacing of intermediate observations has a lesser effect. Short arcs A very short arc leaves a high uncertainty parameter. The object might be in one of many different orbits, at many distances from Earth. In some cases, the initial arc was too short to determine if the object was in orbit around the Earth, or orbiting out in the asteroid belt. With a 1-day observation arc, was thought to be a trans-Neptunian dwarf planet, but is now known to be a 1 km main-belt asteroid. With an observation arc of 3 days, was thought to be a Mars-crossing asteroid that could be a threat to Earth, but was later ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paris Observatory
The Paris Observatory (french: Observatoire de Paris ), a research institution of the Paris Sciences et Lettres University, is the foremost astronomical observatory of France, and one of the largest astronomical centers in the world. Its historic building is on the Left Bank of the Seine in central Paris, but most of the staff work on a satellite campus in Meudon, a suburb southwest of Paris. The Paris Observatory was founded in 1667. Construction was completed by the early 1670s and coincided with a major push for increased science, and the founding of the Royal Academy of Sciences. King Louis XIV's minister of finance organized a "scientific powerhouse" to increase understanding of astronomy, maritime navigation, and science in general. Through the centuries the Paris Observatory has continued in support of astronomical activities, and in the 21st century connects multiple sites and organizations, supporting astronomy and science, past and present. Constitution Administrat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Computer
The term "computer", in use from the early 17th century (the first known written reference dates from 1613), meant "one who computes": a person performing mathematical calculations, before electronic computers became commercially available. Alan Turing described the "human computer" as someone who is "supposed to be following fixed rules; he has no authority to deviate from them in any detail." Teams of people, often women from the late nineteenth century onwards, were used to undertake long and often tedious calculations; the work was divided so that this could be done in parallel. The same calculations were frequently performed independently by separate teams to check the correctness of the results. Since the end of the 20th century, the term "human computer" has also been applied to individuals with prodigious powers of mental arithmetic, also known as mental calculators. Origins in sciences Astronomers in Renaissance times used that term about as often as they called themse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes
International Astronomical Union, August 24, 2006. Accessed May 5, 2008.
Minor planets include asteroids (

picture info

LCDB Quality Code
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnitude (astronomy)
In astronomy, magnitude is a unitless measure of the brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, ... of an astronomical object, object in a defined passband, often in the visible spectrum, visible or infrared spectrum, but sometimes across all wavelengths. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus. The scale is Logarithmic scale, logarithmic and defined such that a magnitude 1 star is exactly 100 times brighter than a magnitude 6 star. Thus each step of one magnitude is \sqrt[5] \approx 2.512 times brighter than the magnitude 1 higher. The brighter an object appears, the lower the value of its magnitude, with the brightest objects reaching negative values. Astronomers use two different defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Period
The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the background stars, measured in sidereal time. The other type of commonly used rotation period is the object's synodic rotation period (or ''solar day''), measured in solar time, which may differ by a fraction of a rotation or more than one rotation to accommodate the portion of the object's orbital period during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and gas giants, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a gas giant (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lightcurve
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IAU Code
This is a list of observatory codes (IAU codes or MPC codes) published by the Minor Planet Center. For a detailed description, ''see observations of small Solar System bodies Observations of minor planets as well as comets and natural satellites of the Solar System are made by astronomical observatories all over the world and reported to the Minor Planet Center (MPC), a service of the International Astronomical Unio ...''. List References * {{DEFAULTSORT:Observatory codes * Astronomy-related lists Technology-related lists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Magnitude
Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse Logarithmic scale, logarithmic Magnitude (astronomy), astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly , without Extinction (astronomy), extinction (or dimming) of its light due to absorption by Interstellar medium, interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. As with all astronomical magnitude (astronomy), magnitudes, the absolute magnitude can be specified for different wavelength ranges corresponding to specified Filter (optics), filter bands or passbands; for stars a commonly quoted absolute magnitude is the absolute visual magnitude, which uses the visual (V) band of the spectrum (in the UBV phot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Albedo
Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. Surface albedo is defined as the ratio of radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While bi-hemispherical reflectance is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as obtained from flux measurements) to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]