HOME
*



picture info

119 Tauri
119 Tauri (also known as CE Tauri) is a red supergiant star in the constellation Taurus (constellation), Taurus. It is a semiregular variable and its angular diameter has been measured at about . It is a similar star to Betelgeuse although redder and more distant. Description 119 Tauri has a stellar classification, spectral class of M2 and a luminosity class of Iab-Ib, intermediate between an intermediate-luminosity supergiant and a less luminous supergiant. It is approximately 1,800 light years from Earth, and with a colour index of +2.07 it is one of the reddest naked eye stars in the night sky. 119 Tauri is classified as a semiregular variable star, semiregular variable star and has been given the variable star designation CE Tauri. The General Catalogue of Variable Stars gives a magnitude range from +4.23 to +4.54 with a period of 165 days. Other published studies find poorly-defined periodicity, but with possible periods around 270 and 1,300 days. Its infrared ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




119 Tauri(english)new
119 Tauri (also known as CE Tauri) is a red supergiant star in the constellation Taurus (constellation), Taurus. It is a semiregular variable and its angular diameter has been measured at about . It is a similar star to Betelgeuse although redder and more distant. Description 119 Tauri has a stellar classification, spectral class of M2 and a luminosity class of Iab-Ib, intermediate between an intermediate-luminosity supergiant and a less luminous supergiant. It is approximately 1,800 light years from Earth, and with a colour index of +2.07 it is one of the reddest naked eye stars in the night sky. 119 Tauri is classified as a semiregular variable star, semiregular variable star and has been given the variable star designation CE Tauri. The General Catalogue of Variable Stars gives a magnitude range from +4.23 to +4.54 with a period of 165 days. Other published studies find poorly-defined periodicity, but with possible periods around 270 and 1,300 days. Its infrared ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Betelgeuse
Betelgeuse is a red supergiant of spectral type M1-2 and one of the largest stars visible to the naked eye. It is usually the tenth-brightest star in the night sky and, after Rigel, the second-brightest in the constellation of Orion. It is a distinctly reddish, semiregular variable star whose apparent magnitude, varying between +0.0 and +1.6, has the widest range displayed by any first-magnitude star. At near-infrared wavelengths, Betelgeuse is the brightest star in the night sky. Its Bayer designation is α Orionis, Latinised to Alpha Orionis and abbreviated Alpha Ori or α Ori. If it were at the center of our Solar System, its surface would lie beyond the asteroid belt and it would engulf the orbits of Mercury, Venus, Earth, and Mars. Nevertheless, there are several even larger stars in the Milky Way, including supergiants like Mu Cephei and the peculiar hypergiant, VY Canis Majoris. Calculations of Betelgeuse's mass range from slightly under ten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Sun's apparent motion The ecliptic is the apparent path of the Sun throughout the course of a year. Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 hours ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superzoom
A superzoom or ultrazoom lens is a type of photographic zoom lens with unconventionally large focal length factors, typically ranging from wide angle to extreme long lens focal lengths in one lens. There is no clear definition of a superzoom lens, but the name generally covers lenses that have a range well above the 3× or 4× of a standard zoom lens, with lenses being 10×, 12×, 18×, or above considered superzoom. Due to trade-offs in the optical design, superzoom lenses are noted for having poorer optical quality at the extreme focal length ranges, mostly distortion at max wide angle and long lens ranges. The long focal lengths normally have to be combined with image stabilization.Chris Gatcum, The Beginner's Photography Guide, Dorling Kindersly Limited/Penguin - 2013, page 107 See also * List of superzoom compact cameras This is a list of superzoom compact cameras, sometimes also called as superzoom 'travel' compact cameras. See also * Point-and-shoot camera A po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Radiation
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, Light, (visible) light, ultraviolet, X-rays, and gamma rays. All of these waves form part of the electromagnetic spectrum. Classical electromagnetism, Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric field, electric and magnetic fields. Depending on the frequency of oscillation, different wavelengths of electromagnetic spectrum are produced. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted ''c''. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The position of an electromagnetic wave w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700  nanometers (430  THz). Longer IR wavelengths (30 μm-100 μm) are sometimes included as part of the terahertz radiation range. Almost all black-body radiation from objects near room temperature is at infrared wavelengths. As a form of electromagnetic radiation, IR propagates energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon. It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Catalogue Of Variable Stars
The General Catalogue of Variable Stars (GCVS) is a list of variable stars. Its first edition, containing 10,820 stars, was published in 1948 by the Academy of Sciences of the USSR and edited by B. V. Kukarkin and P. P. Parenago. Second and third editions were published in 1958 and 1968; the fourth edition, in three volumes, was published 1985–1987. It contained 28,435 stars. A fourth volume of the fourth edition containing reference tables was later published, as well as a fifth volume containing variable stars outside the Galaxy. The last edition (GCVS v5.1) based on data compiled in 2015 gathers 52,011 variable stars. The most up-to-date version of the GCVS is available at the GCVS website. It contains improved coordinates for the variable stars in the printed fourth edition of the GCVS, as well as variable stars discovered too recently to be included in the fourth edition. An older version of the GCVS dating from 2004 is available from the VizieR service at the Ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variable Star Designation
In astronomy, a variable star designation is a unique identifier given to variable stars. It uses a variation on the Bayer designation format, with an identifying label (as described below) preceding the Latin genitive of the name of the constellation in which the star lies. See List of constellations for a list of constellations and the genitive forms of their names. The identifying label can be one or two Latin letters or a ''V'' plus a number (e.g. V399). Examples are R Coronae Borealis, YZ Ceti, V603 Aquilae. Naming The current naming system is: *Stars with existing Greek letter Bayer designations are not given new designations. *Otherwise, start with the letter R and go through Z. *Continue with RR...RZ, then use SS...SZ, TT...TZ and so on until ZZ. *Use AA...AZ, BB...BZ, CC...CZ and so on until reaching QZ, omitting J in both the first and second positions.Most of this system was invented in Germany, which was still on Fraktur at the time, in which the majuscules "I" and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variable Star
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: * Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. * Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of the Sun, for example, varies by about 0.1% over an 11-year solar cycle. Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol. Of the modern astronomers, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Colour Index
In astronomy, the color index is a simple Numerical analysis, numerical Expression (mathematics), expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is. This is a consequence of the Logarithmic scale, logarithmic magnitude scale, in which brighter objects have smaller (more negative) magnitudes than dimmer ones. For comparison, the Sun, whitish Sun has a B−V index of , whereas the bluish Rigel has a B−V of −0.03 (its B magnitude is 0.09 and its V magnitude is 0.12, B−V = −0.03). Traditionally, the color index uses Vega as a Zero Point (photometry), zero point. To measure the index, one observes the Magnitude (astronomy), magnitude of an object successively through two different Astronomical filter, filters, such as U and B, or B and V, where U is sensitive to ultraviolet rays, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface is made up of the ocean, dwarfing Earth's polar ice, lakes, and rivers. The remaining 29% of Earth's surface is land, consisting of continents and islands. Earth's surface layer is formed of several slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth's liquid outer core generates the magnetic field that shapes the magnetosphere of the Earth, deflecting destructive solar winds. The atmosphere of the Earth consists mostly of nitrogen and oxygen. Greenhouse gases in the atmosphere like carbon dioxide (CO2) trap a part of the energy from the Sun close to the surface. Water vapor is widely present in the atmosphere and forms clouds that cover most of the planet. More solar e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Light Years
A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 (one million million, or billion in long scale). As defined by the International Astronomical Union (IAU), a light-year is the distance that light travels in a vacuum in one Julian year (365.25 days). Because it includes the time-measurement word "year", the term ''light-year'' is sometimes misinterpreted as a unit of time. The ''light-year'' is most often used when expressing distances to stars and other distances on a galactic scale, especially in non-specialist contexts and popular science publications. The unit most commonly used in professional astronomy is the parsec (symbol: pc, about 3.26 light-years) which derives from astrometry; it is the distance at which one astronomical unit subtends an angle of one second of arc. Defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]