1-planar Graph
   HOME
*



picture info

1-planar Graph
In topological graph theory, a 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph. Coloring 1-planar graphs were first studied by , who showed that they can be colored with at most seven colors. Later, the precise number of colors needed to color these graphs, in the worst case, was shown to be six.. The example of the complete graph ''K''6, which is 1-planar, shows that 1-planar graphs may sometimes require six colors. However, the proof that six colors are always enough is more complicated. Ringel's motivation was in trying to solve a variation of total coloring for planar graphs, in which one simultaneously colors the vertices and faces of a planar graph in such a way that no two adjacent ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedral Graph
In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs. Characterization The Schlegel diagram of a convex polyhedron represents its vertices and edges as points and line segments in the Euclidean plane, forming a subdivision of an outer convex polygon into smaller convex polygons (a convex drawing of the graph of the polyhedron). It has no crossings, so every polyhedral graph is also a planar graph. Additionally, by Balinski's theorem, it is a 3-vertex-connected graph. According to Steinitz's theorem, these two graph-theoretic properties are enough to completely characterize the polyhedral graphs: they are exactly the 3-vertex-connected planar graphs. That is, whenever a graph is both planar and 3-vertex-connected, there exists a polyhedron whose vertices and edges fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Complexity
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. The first systematic work on parameterized complexity was done by . Under the assumption that P ≠ NP, there exist many natural problems that require superpolynomial running time when complexity is measured in terms of the input size only, but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth of the function over is relatively small then such p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SWAT And WADS Conferences
WADS, the Algorithms and Data Structures Symposium, is an international academic conference in the field of computer science, focusing on algorithms and data structures.WADS web page
WADS is held every second year, usually in and always in . It is held in alternation with its sister conference, the Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), which is usually held in and always in

Graph Bandwidth
In graph theory, the graph bandwidth problem is to label the vertices of a graph with distinct integers so that the quantity \max\ is minimized ( is the edge set of ). The problem may be visualized as placing the vertices of a graph at distinct integer points along the ''x''-axis so that the length of the longest edge is minimized. Such placement is called linear graph arrangement, linear graph layout or linear graph placement. The weighted graph bandwidth problem is a generalization wherein the edges are assigned weights and the cost function to be minimized is \max\. In terms of matrices, the (unweighted) graph bandwidth is the minimal bandwidth of a symmetric matrix which is an adjacency matrix of the graph. The bandwidth may also be defined as one less than the maximum clique size in a proper interval supergraph of the given graph, chosen to minimize its clique size . Bandwidth formulas for some graphs For several families of graphs, the bandwidth \varphi(G) is given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lecture Notes In Computer Science
''Lecture Notes in Computer Science'' is a series of computer science books published by Springer Science+Business Media since 1973. Overview The series contains proceedings, post-proceedings, monographs, and Festschrifts. In addition, tutorials, state-of-the-art surveys, and "hot topics" are increasingly being included. The series is indexed by DBLP. See also *''Monographiae Biologicae'', another monograph series published by Springer Science+Business Media *''Lecture Notes in Physics'' *''Lecture Notes in Mathematics'' *''Electronic Workshops in Computing ''Electronic Workshops in Computing'' (eWiC) is a publication series by the British Computer Society. The series provides free online access for conferences and workshops in the area of computing. For example, the EVA London Conference proceeding ...'', published by the British Computer Society References External links * Publications established in 1973 Computer science books Series of non-fiction books Springer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-complete
In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, "nondeterministic" refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Multipartite Graph
In graph theory, a part of mathematics, a -partite graph is a graph whose vertices are (or can be) partitioned into different independent sets. Equivalently, it is a graph that can be colored with colors, so that no two endpoints of an edge have the same color. When these are the bipartite graphs, and when they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any it is NP-complete, given an uncolored graph, to test whether it is -partite. However, in some applications of graph theory, a -partite graph may be given as input to a computation with its coloring already determined; this can happen when the sets of vertices in the graph represent different types of objects. For instance, folksonomies have been modeled mathematically by tripartite graphs in which the three sets of vertices in the graph represent users of a system, resources that the users are tagging, and tags that the users have applied to the resources. A comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Bipartite Graph
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier.. Definition A complete bipartite graph is a graph whose vertices can be partitioned into two subsets and such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph such that for every two vertices and, is an edge in . A complete bipartite graph w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information Processing Letters
''Information Processing Letters'' is a peer reviewed scientific journal in the field of computer science, published by Elsevier Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell'', the ScienceDirect collection of electronic journals, '' Trends'', th .... The aim of the journal is to enable fast dissemination of results in the field of information processing in the form of short papers. Submissions are limited to nine double-spaced pages. Both theoretical and experimental research is covered. External links * Computer science journals Publications established in 1971 Semi-monthly journals Elsevier academic journals {{compu-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-vertex-connected Graph
In graph theory, a connected graph is said to be -vertex-connected (or -connected) if it has more than vertices and remains connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. Complete graphs are not included in this version of the definition since they cannot be disconnected by deleting vertices. The complete graph with ''n'' vertices has connectivity ''n'' − 1, as implied by the first definition. An equivalent definition is that a graph with at least two vertices is ''k''-connected if, for every pair of its vertices, it is possible to find ''k'' vertex-independent paths connecting these vertices; see Menger's theorem . This definition produces the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]