∞-groupoid
   HOME
*





∞-groupoid
In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard model structure). It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are spaces. Globular Groupoids Alexander Grothendieck suggested in ''Pursuing Stacks'' that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes. These sets are constructed as presheaves on the globular category \mathbb. This is defined as the category whose objects are finite ordinals /math> and morphisms are given by \begin \sigma_n: \to +1\ \tau_n: \to +1\end such that the globular relations hold \begin \sigma_\circ\sigma_n &= \tau_\circ\sigma_n \\ \sigma_\circ\tau_n &= \tau_\circ\tau_n \end These encod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitehead Product
In mathematics, the Whitehead product is a graded quasi-Lie algebra structure on the homotopy groups of a space. It was defined by J. H. C. Whitehead in . The relevant MSC code is: 55Q15, Whitehead products and generalizations. Definition Given elements f \in \pi_k(X), g \in \pi_l(X), the Whitehead bracket : ,g\in \pi_(X) is defined as follows: The product S^k \times S^l can be obtained by attaching a (k+l)-cell to the wedge sum :S^k \vee S^l; the attaching map is a map :S^ \stackrel S^k \vee S^l. Represent f and g by maps :f\colon S^k \to X and :g\colon S^l \to X, then compose their wedge with the attaching map, as :S^ \stackrel S^k \vee S^l \stackrel X . The homotopy class of the resulting map does not depend on the choices of representatives, and thus one obtains a well-defined element of :\pi_(X). Grading Note that there is a shift of 1 in the grading (compared to the indexing of homotopy groups), so \pi_k(X) has degree (k-1); equivalently, L_k = \p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pursuing Stacks
''Pursuing Stacks'' (french: À la Poursuite des Champs) is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes. The topic of the work is a generalized homotopy theory using higher category theory. The word "stacks" in the title refers to what are nowadays usually called " ∞-groupoids", one possible definition of which Grothendieck sketches in his manuscript. (The stacks of algebraic geometry, which also go back to Grothendieck, are not the focus of this manuscript.) Among the concepts introduced in the work are derivators and test categories. Some parts of the manuscript were later developed in: * * Overview of manuscript I. The letter to Daniel Quillen Pursuing stacks started out as a letter from Grothendieck to Daniel Quillen. In this letter he discusses Quillen's progress on the foundations for homotopy theory and remarked on the lack of progress since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are spaces. If we model our ∞-groupoids as Kan complexes, then the homotopy types of the geometric realizations of these sets give models for every homotopy type. It is conjectured that there are many different "equivalent" models for ∞-groupoids all which can be realized as homotopy types. See also *''Pursuing Stacks'' *N-group (category theory) In mathematics, an ''n''-group, or ''n''-dimensional higher group, is a special kind of ''n''-category that generalises the concept of group to higher-dimensional algebra. Here, n may be any natural number or infinity. The thesis of Alexander G ... References *John BaezThe Homotopy Hypothesis* * External links *What is the mistake in the proof of the Homotopy hypothesis by Kapranov and Voevodsky?J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: *''Group'' with a partial function replacing the binary operation; *''Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g:A \rightarrow B, h:B \rightarrow C, say. Composition is then a total function: \circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C , so that h \circ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: *''Group'' with a partial function replacing the binary operation; *''Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g:A \rightarrow B, h:B \rightarrow C, say. Composition is then a total function: \circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C , so that h \circ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Globular Set
In category theory, a branch of mathematics, a globular set is a higher-dimensional generalization of a directed graph. Precisely, it is a sequence of sets X_0, X_1, X_2, \dots equipped with pairs of functions s_n, t_n: X_n \to X_ such that * s_n \circ s_ = s_n \circ t_, * t_n \circ s_ = t_n \circ t_. (Equivalently, it is a presheaf on the category of “globes”.) The letters "''s''", "''t''" stand for "source" and "target" and one imagines X_n consists of directed edges at level ''n''. A variant of the notion was used by Grothendieck to introduce the notion of an ∞-groupoid In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard model structure). I .... Extending Grothendieck's work, gave a definition of a weak ∞-category in terms of globular sets. References Further reading *Dimitri Ara. On t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related to ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




N-group (category Theory)
In mathematics, an ''n''-group, or ''n''-dimensional higher group, is a special kind of ''n''-category that generalises the concept of group to higher-dimensional algebra. Here, n may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of 2-groups under the moniker 'gr-category'. The general definition of n-group is a matter of ongoing research. However, it is expected that every topological space will have a ''homotopy n-group'' at every point, which will encapsulate the Postnikov tower of the space up to the homotopy group \pi_n, or the entire Postnikov tower for n=\infty. Examples Eilenberg-Maclane spaces One of the principal examples of higher groups come from the homotopy types of Eilenberg–MacLane spaces K(A,n) since they are the fundamental building blocks for constructing higher groups, and homotopy types in general. For instance, every group G can be turned into an Eilenberg-Maclane space K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic invariants of spaces, such as their fundamental weak ∞-groupoid. Strict higher categories An ordinary category has objects and morphisms, which are called 1-morphisms in the context of higher category theory. A 2-category generalizes this by also including 2-morphisms between the 1-morphisms. Continuing this up to ''n''-morphisms between (''n'' − 1)-morphisms gives an ''n''-category. Just as the category known as Cat, which is the category of small categories and functors is actually a 2-category with natural transformations as its 2-morphisms, the category ''n''-Cat of (small) ''n''-categories is actually a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitehead Tower
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree k agrees with the truncated homotopy type of the original space X. Postnikov systems were introduced by, and are named after, Mikhail Postnikov. Definition A Postnikov system of a path-connected space X is an inverse system of spaces :\cdots \to X_n \xrightarrow X_\xrightarrow \cdots \xrightarrow X_2 \xrightarrow X_1 \xrightarrow * with a sequence of maps \phi_n\colon X \to X_n compatible with the inverse system such that # The map \phi_n\colon X \to X_n induces an isomorphism \pi_i(X) \to \pi_i(X_n) for every i\leq n. # \pi_i(X_n) = 0 for i > n. # Each map p_n\colon X_n \to X_ is a fibration, and so the fiber F_n is an Eilenberg–MacLane space, K(\pi_n(X),n). The first two conditions imply that X_1 is also a K(\pi_1(X),1)-space. More generally, if X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Groupoid
In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. Definition Let be a topological space. Consider the equivalence relation on continuous paths in in which two continuous paths are equivalent if they are homotopic with fixed endpoints. The fundamental groupoid assigns to each ordered pair of points in the collection of equivalence classes of continuous paths from to . More generally, the fundamental groupoid of on a set restricts the fundamental groupoid to the points which lie in both and . This allows for a generalisation of the Van Kampen theorem using two base points to compute the fundamental group of the circle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kan Complex
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. Definitions Definition of the standard n-simplex For each ''n'' ≥ 0, recall that the standard n-simplex, \Delta^n, is the representable simplicial set :\Delta^n(i) = \mathrm_ ( Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard n-simplex: the convex subspace of ℝn+1 consisting of all points (t_0,\dots,t_n) such that the coordinates are non-negative and sum to 1. Definition of a horn For each ''k'' ≤ ''n'', this has a subcomplex \Lambda^n_k, the ''k''-th horn inside \Delta^n, corresponding to the boundary of the ''n''-simplex, with the ''k''-th face r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]