ω-bounded Space
   HOME
*





ω-bounded Space
In mathematics, an ω-bounded space is a topological space in which the closure of every countable subset is compact. More generally, if ''P'' is some property of subspaces, then a ''P''-bounded space is one in which every subspace with property ''P'' has compact closure. Every compact space is ω-bounded, and every ω-bounded space is countably compact. The long line is ω-bounded but not compact. The bagpipe theorem In mathematics, the bagpipe theorem of describes the structure of the connected (but possibly non-paracompact space, paracompact) ω-bounded space, ω-bounded surfaces by showing that they are "bagpipes": the connected sum of a compact space, co ... describes the ω-bounded surfaces. References * Properties of topological spaces {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to express this is to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Countably Compact
In mathematics a topological space is called countably compact if every countable open cover has a finite subcover. Equivalent definitions A topological space ''X'' is called countably compact if it satisfies any of the following equivalent conditions: :(1) Every countable open cover of ''X'' has a finite subcover. :(2) Every infinite ''set'' ''A'' in ''X'' has an ω-accumulation point in ''X''. :(3) Every ''sequence'' in ''X'' has an accumulation point in ''X''. :(4) Every countable family of closed subsets of ''X'' with an empty intersection has a finite subfamily with an empty intersection. (1) \Rightarrow (2): Suppose (1) holds and ''A'' is an infinite subset of ''X'' without \omega-accumulation point. By taking a subset of ''A'' if necessary, we can assume that ''A'' is countable. Every x\in X has an open neighbourhood O_x such that O_x\cap A is finite (possibly empty), since ''x'' is ''not'' an ω-accumulation point. For every finite subset ''F'' of ''A'' define O_F = \cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Long Line (topology)
In topology, the long line (or Alexandroff line) is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties (e.g., it is neither Lindelöf nor separable). Therefore, it serves as one of the basic counterexamples of topology. Intuitively, the usual real-number line consists of a countable number of line segments [0,1) laid end-to-end, whereas the long line is constructed from an uncountable number of such segments. Definition The closed long ray L is defined as the cartesian product of the First uncountable ordinal, first uncountable ordinal \omega_1 with the Interval (mathematics), half-open interval [0, 1), equipped with the order topology that arises from the lexicographical order on \omega_1 \times [0,1). The open long ray is obtained from the closed long ray by removing the smallest element (0, 0). The long line is obtained by putting together a long ray i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bagpipe Theorem
In mathematics, the bagpipe theorem of describes the structure of the connected (but possibly non-paracompact) ω-bounded surfaces by showing that they are "bagpipes": the connected sum of a compact "bag" with several "long pipes". Statement A space is called ω-bounded if the closure of every countable set is compact. For example, the long line and the closed long ray are ω-bounded but not compact. When restricted to a metric space ω-boundedness is equivalent to compactness. The bagpipe theorem states that every ω-bounded connected surface is the connected sum of a compact connected surface and a finite number of long pipes. A space P is called a long pipe if there exist subspaces \ each of which is homeomorphic to S^1 \times \mathbb such that for n we have \overline \subseteq U_m and the boundary of U_n in U_m is homeomorphic to S^1. The simplest example of a pipe is the product S^1 \times L^+
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]