η Set
   HOME
*





η Set
In mathematics, an η set (''Eta set'') is a type of totally ordered set introduced by that generalizes the order type η of the rational numbers. Definition If \alpha is an ordinal then a \eta_\alpha set is a totally ordered set such that if X and Y are two subsets of cardinality less than \aleph_\alpha such that every element of X is less than every element of Y then there is some element greater than all elements of X and less than all elements of Y. Examples The only non-empty countable η0 set (up to isomorphism) is the ordered set of rational numbers. Suppose that κ=ℵα is a regular cardinal and let ''X'' be the set of all functions ''f'' from κ to such that if ''f''(α) = 0 then ''f''(β) = 0 for all β>α, ordered lexicographically. Then ''X'' is a ηα set. The union of all these sets is the class of surreal number In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Totally Ordered Set
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Type
In mathematics, especially in set theory, two ordered sets and are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) f\colon X \to Y such that both and its inverse are monotonic (preserving orders of elements). In the special case when is totally ordered, monotonicity of implies monotonicity of its inverse. For example, the set of integers and the set of even integers have the same order type, because the mapping n\mapsto 2n is a bijection that preserves the order. But the set of integers and the set of rational numbers (with the standard ordering) do not have the same order type, because even though the sets are of the same size (they are both countably infinite), there is no order-preserving bijective mapping between them. To these two order types we may add two more: the set of positive integers (which has a least element), and that of negative integers (which has a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and then the following are equivalent for a cardinal \kappa: # \kappa is a regular cardinal. # If \kappa = \sum_ \lambda_i and \lambda_i < \kappa for all i, then , I, \ge \kappa. # If S = \bigcup_ S_i, and if , I, < \kappa and , S_i, < \kappa for all i, then , S, < \kappa. # The

picture info

Surreal Number
In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals share many properties with the reals, including the usual arithmetic operations (addition, subtraction, multiplication, and division); as such, they form an ordered field. If formulated in von Neumann–Bernays–Gödel set theory, the surreal numbers are a universal ordered field in the sense that all other ordered fields, such as the rationals, the reals, the rational functions, the Levi-Civita field, the superreal numbers (including the hyperreal numbers) can be realized as subfields of the surreals. The surreals also contain all transfinite ordinal numbers; the arithmetic on them is given by the natural operations. It has also been shown (in von Neumann–Bernays–Gödel set theory) that the maximal class hyperreal field is isomorp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Saturated Model
In mathematical logic, and particularly in its subfield model theory, a saturated model ''M'' is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is \aleph_1-saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection. Definition Let ''κ'' be a finite or infinite cardinal number and ''M'' a model in some first-order language. Then ''M'' is called ''κ''-saturated if for all subsets ''A'' ⊆ ''M'' of cardinality less than ''κ'', the model ''M'' realizes all complete types over ''A''. The model ''M'' is called saturated if it is , ''M'', -saturated where , ''M'', denotes the cardinality of ''M''. That is, it realizes all complete types over sets of parameters of size less than , ''M'', . According to some authors, a model ''M'' is called countably saturated if it is \aleph_1-saturated; that is, it realizes all complete types over count ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]