Δ-hyperbolic Space
   HOME
*



picture info

Δ-hyperbolic Space
In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups. Definitions In this paragraph we give various definitions of a \delta-hyperbolic space. A metric space is said to be (Gromov-) hyperbolic if it is \delta-hyperbolic for some \delta > 0. Definition using the Gromov product Let (X,d) be a metric space. The Gromov product of two points y, z \in X with respect to a third one x \in X is defined by the formula: :(y,z)_x = \frac 1 2 \left( d(x, y) + d(x, z) - d(y, z) \right). Gromov's definition of a hyperbolic metric space is then as follows: X is \delta-hyperbolic if and only if all x,y,z,w \in X satisfy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE