Čech Closure Operator
   HOME
*





Čech Closure Operator
In topology, a preclosure operator, or Čech closure operator is a map between subsets of a set, similar to a topological closure operator, except that it is not required to be idempotent. That is, a preclosure operator obeys only three of the four Kuratowski closure axioms. Definition A preclosure operator on a set X is a map quadp :quadp:\mathcal(X) \to \mathcal(X) where \mathcal(X) is the power set of X. The preclosure operator has to satisfy the following properties: # varnothingp = \varnothing \! (Preservation of nullary unions); # A \subseteq p (Extensivity); # \cup Bp = p \cup p (Preservation of binary unions). The last axiom implies the following: : 4. A \subseteq B implies p \subseteq p. Topology A set A is closed (with respect to the preclosure) if p=A. A set U\subset X is open (with respect to the preclosure) if A=X\setminus U is closed. The collection of all open sets generated by the preclosure operator is a topology; however, the above topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure Operator
In mathematics, a closure operator on a set ''S'' is a function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families", in honor of E. H. Moore who studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure originated in the late 19th century with notable contributions by Ernst Schröder, Richard Dedekind and Georg Cantor. Closure operators are also called "hull operators", which prevents confusion with the "c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Idempotent
Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projector (linear algebra), projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + ''wikt:potence, potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kuratowski Closure Axioms
In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator. Definition Kuratowski closure operators and weakenings Let X be an arbitrary set and \wp(X) its power set. A Kuratowski closure operator is a unary operation \mathbf:\wp(X) \to \wp(X) with the following properties: A consequence of \mathbf preserving binary unions is the following condition: In fact if we rewrite the equality in 4'' as an inclusion, giving the weaker axiom 4'''' (''subadditivity''): then it is easy to see that axioms 4''' and 4'''' together are equiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pretopological Space
In general topology, a pretopological space is a generalization of the concept of topological space. A pretopological space can be defined in terms of either filters or a preclosure operator. The similar, but more abstract, notion of a Grothendieck pretopology is used to form a Grothendieck topology, and is covered in the article on that topic. Let X be a set. A neighborhood system for a pretopology on X is a collection of filters N(x), one for each element x of X such that every set in N(x) contains x as a member. Each element of N(x) is called a neighborhood of x. A pretopological space is then a set equipped with such a neighborhood system. A net x_ converges to a point x in X if x_ is eventually in every neighborhood of x. A pretopological space can also be defined as (X, \operatorname), a set X with a preclosure operator (Čech closure operator) \operatorname. The two definitions can be shown to be equivalent as follows: define the closure of a set S in X to be the set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Premetric
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequential Closure Operator
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infinit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequential Space
In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space (X, \tau), if a convergent sequence is contained in a closed set C, then the limit of that sequence must be contained in C as well. This property is known as sequential closure. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eduard Čech
Eduard Čech (; 29 June 1893 – 15 March 1960) was a Czech mathematician. His research interests included projective differential geometry and topology. He is especially known for the technique known as Stone–Čech compactification (in topology) and the notion of Čech cohomology. He was the first to publish a proof of Tychonoff's theorem in 1937. Biography He was born in Stračov, then in Bohemia, Austria-Hungary, now in the Czech Republic. His father was Čeněk Čech, a policeman, and his mother was Anna Kleplová. After attending the gymnasium in Hradec Králové, Čech was admitted to the Philosophy Faculty of Charles University of Prague in 1912. In 1915 he was drafted into the Austro-Hungarian Army and participated in World War I, after which he completed his undergraduate degree in 1918. He received his doctoral degree in 1920 at Charles University; his thesis, titled ''On Curves and Plane Elements of the Third Order'', was written under the direction of Karel Petr. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]