étale Homotopy Type
   HOME
*





étale Homotopy Type
In mathematics, especially in algebraic geometry, the étale homotopy type is an analogue of the homotopy type of topological spaces for algebraic varieties. Roughly speaking, for a variety or scheme ''X'', the idea is to consider étale coverings U \rightarrow X and to replace each connected component of ''U'' and the higher "intersections", i.e., fiber products, U_n := U \times_X U \times_X \dots \times_X U (''n''+1 copies of ''U'', n \geq 0) by a single point. This gives a simplicial set which captures some information related to ''X'' and the étale topology of it. Slightly more precisely, it is in general necessary to work with étale hypercovers (U_n)_ instead of the above simplicial scheme determined by a usual étale cover. Taking finer and finer hypercoverings (which is technically accomplished by working with the pro-object in simplicial sets determined by taking all hypercoverings), the resulting object is the étale homotopy type of ''X''. Similarly to classical topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Type
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Component (topology)
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fiber Product Of Schemes
In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. Definition The category of schemes is a broad setting for algebraic geometry. A fruitful philosophy (known as Grothendieck's relative point of view) is that much of algebraic geometry should be developed for a morphism of schemes ''X'' → ''Y'' (called a scheme ''X'' over ''Y''), rather than for a single scheme ''X''. For example, rather than simply studying algebraic curves, one can study families of curves over any base scheme ''Y''. Indeed, the two approaches enrich each other. In particular, a scheme over a commutative ring ''R'' means a scheme ''X'' together with a morphism ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypercover
In mathematics, and in particular homotopy theory, a hypercovering (or hypercover) is a simplicial object that generalises the Čech nerve of a cover. For the Čech nerve of an open cover one can show that if the space X is compact and if every intersection of open sets in the cover is contractible, then one can contract these sets and get a simplicial set that is weakly equivalent to X in a natural way. For the étale topology and other sites, these conditions fail. The idea of a hypercover is to instead of only working with n-fold intersections of the sets of the given open cover \mathcal U, to allow the pairwise intersections of the sets in \mathcal U=\mathcal U_0 to be covered by an open cover \mathcal U_1, and to let the triple intersections of this cover to be covered by yet another open cover \mathcal U_2, and so on, iteratively. Hypercoverings have a central role in étale homotopy and other areas where homotopy theory is applied to algebraic geometry, such as motivic homoto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pro-object
In mathematics, the ind-completion or ind-construction is the process of freely adding filtered colimits to a given category ''C''. The objects in this ind-completed category, denoted Ind(''C''), are known as direct systems, they are functors from a small filtered category ''I'' to ''C''. The dual concept is the pro-completion, Pro(''C''). Definitions Filtered categories Direct systems depend on the notion of ''filtered categories''. For example, the category N, whose objects are natural numbers, and with exactly one morphism from ''n'' to ''m'' whenever n \le m, is a filtered category. Direct systems A ''direct system'' or an ''ind-object'' in a category ''C'' is defined to be a functor :F : I \to C from a small filtered category ''I'' to ''C''. For example, if ''I'' is the category N mentioned above, this datum is equivalent to a sequence :X_0 \to X_1 \to \cdots of objects in ''C'' together with morphisms as displayed. The ind-completion Ind-objects in ''C'' form a cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Fundamental Group
The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces. Topological analogue/informal discussion In algebraic topology, the fundamental group ''π''1(''X'',''x'') of a pointed topological space (''X'',''x'') is defined as the group of homotopy classes of loops based at ''x''. This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology. In the classification of covering spaces, it is shown that the fundamental group is exactly the group of deck transformations of the universal covering space. This is more promising: finite étale morphisms are the appropriate analogue of covering spaces. Unfortunately, an algebraic variety ''X'' often fails to have a "universal cover" that is finite over ''X'', so one must consider the entire category of finite étale coverings of ''X''. One can then defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




étale Cohomology
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type. History Étale cohomology was introduced by , using some suggestions by Jean-Pierre Serre, and was motivated by the attempt to construct a Weil cohomology theory in order to prove the Weil conjectures. The foundations were soon after worked out by Grothendieck together with Michael Artin, and published as and SGA 4. Grothendieck used étale cohomology to prove some of the Weil conjectures (Bernard Dwork had already managed to prove the rationality part of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]