(B, N) Pair
   HOME
*





(B, N) Pair
In mathematics, a (''B'', ''N'') pair is a structure on groups of Lie type that allows one to give uniform proofs of many results, instead of giving a large number of case-by-case proofs. Roughly speaking, it shows that all such groups are similar to the general linear group over a field. They were introduced by the mathematician Jacques Tits, and are also sometimes known as Tits systems. Definition A (''B'', ''N'') pair is a pair of subgroups ''B'' and ''N'' of a group ''G'' such that the following axioms hold: * ''G'' is generated by ''B'' and ''N''. * The intersection, ''T'', of ''B'' and ''N'' is a normal subgroup of ''N''. *The group ''W'' = ''N/T'' is generated by a set ''S'' of elements of order 2 such that **If ''s'' is an element of ''S'' and ''w'' is an element of ''W'' then ''sBw'' is contained in the union of ''BswB'' and ''BwB''. **No element of ''S'' normalizes ''B''. The set ''S'' is uniquely determined by ''B'' and ''N'' and the pair (''W'',''S'') is a Coxeter sys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Of Lie Type
In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase ''group of Lie type'' does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups. The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. and are standard references for groups of Lie type. Classical groups An initial approach to this question was the definition and detailed study of the so-called ''classical groups'' over finite and other fields by . These groups were studied by L. E. Dickson a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Nature
Springer Nature or the Springer Nature Group is a German-British academic publishing company created by the May 2015 merger of Springer Science+Business Media and Holtzbrinck Publishing Group's Nature Publishing Group, Palgrave Macmillan, and Macmillan Education. History The company originates from a number of journals and publishing houses, notably Springer-Verlag, which was founded in 1842 by Julius Springer in Berlin (the grandfather of Bernhard Springer who founded Springer Publishing in 1950 in New York), Nature Publishing Group which has published ''Nature (journal) , Nature'' since 1869, and Macmillan Education, which goes back to Macmillan Publishers founded in 1843. Springer Nature was formed in 2015 by the merger of Nature Publishing Group, Palgrave Macmillan and Macmillan Education (held by Holtzbrinck Publishing Group) with Springer Science+Business Media (held by BC Partners). Plans for the merger were first announced on 15 January 2015. The transaction was concluded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Group
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients (equivalently, its abelianization, which is the universal abelian quotient, is trivial). In symbols, a perfect group is one such that ''G''(1) = ''G'' (the commutator subgroup equals the group), or equivalently one such that ''G''ab = (its abelianization is trivial). Examples The smallest (non-trivial) perfect group is the alternating group ''A''5. More generally, any non-abelian simple group is perfect since the commutator subgroup is a normal subgroup with abelian quotient. Conversely, a perfect group need not be simple; for example, the special linear group over the field with 5 elements, SL(2,5) (or the binary icosahedral group, which is isomorphic to it) is perfect but not simple (it has a non-trivial center containing \left(\begin-1 & 0 \\ 0 & -1\end\right) = \left(\begin4 & 0 \\ 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normalizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', or equivalently, such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and normaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transversal (combinatorics)
In mathematics, particularly in combinatorics, given a family of sets, here called a collection ''C'', a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of ''C'' (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal: * One variation is that there is a bijection ''f'' from the transversal to ''C'' such that ''x'' is an element of ''f''(''x'') for each ''x'' in the transversal. In this case, the transversal is also called a system of distinct representatives (SDR). * The other, less commonly used, does not require a one-to-one relation between the elements of the transversal and the sets of ''C''. In this situation, the members of the system of representatives are not necessarily distinct. In computer science, comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double Coset
In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let be a group, and let and be subgroups. Let act on by left multiplication and let act on by right multiplication. For each in , the -double coset of is the set :HxK = \. When , this is called the -double coset of . Equivalently, is the equivalence class of under the equivalence relation : if and only if there exist in and in such that . The set of all double cosets is denoted by H \,\backslash G / K. Properties Suppose that is a group with subgroups and acting by left and right multiplication, respectively. The -double cosets of may be equivalently described as orbits for the product group acting on by . Many of the basic properties of double cosets follow immediately from the fact that they are orbits. However, because is a group and and are subgroups acting by multiplicati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bruhat Decomposition
In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) ''G'' = ''BWB'' of certain algebraic groups ''G'' into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases. It is related to the Schubert cell decomposition of flag varieties: see Weyl group for this. More generally, any group with a (''B'', ''N'') pair has a Bruhat decomposition. Definitions *''G'' is a connected, reductive algebraic group over an algebraically closed field. *''B'' is a Borel subgroup of ''G'' *''W'' is a Weyl group of ''G'' corresponding to a maximal torus of ''B''. The Bruhat decomposition of ''G'' is the decomposition :G=BWB =\bigsqcup_BwB of ''G'' as a disjoint union of double cosets of ''B'' parameterized by the elements of the Weyl group ''W''. (Note that alt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iwahori Subgroup
In algebra, an Iwahori subgroup is a subgroup of a reductive algebraic group over a nonarchimedean local field that is analogous to a Borel subgroup of an algebraic group. A parahoric subgroup is a proper subgroup that is a finite union of double cosets of an Iwahori subgroup, so is analogous to a parabolic subgroup of an algebraic group. Iwahori subgroups are named after Nagayoshi Iwahori, and "parahoric" is a portmanteau of "parabolic" and "Iwahori". studied Iwahori subgroups for Chevalley groups over ''p''-adic fields, and extended their work to more general groups. Roughly speaking, an Iwahori subgroup of an algebraic group ''G''(''K''), for a local field ''K'' with integers ''O'' and residue field ''k'', is the inverse image in ''G''(''O'') of a Borel subgroup of ''G''(''k''). A reductive group over a local field has a Tits system (''B'',''N''), where ''B'' is a parahoric group, and the Weyl group of the Tits system is an affine Coxeter group. Definition More precisely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]