In
organic chemistry
Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
, Zaytsev's rule (or Zaitsev's rule, Saytzeff's rule, Saytzev's rule) is an
empirical rule for predicting the favored
alkene
In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or at the terminal position. Terminal alkenes are also known as Alpha-olefin, α-olefins.
The Internationa ...
product(s) in
elimination reaction
An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 r ...
s. While at the
University of Kazan, Russian chemist
Alexander Zaytsev studied a variety of different elimination reactions and observed a general trend in the resulting alkenes. Based on this trend, Zaytsev proposed that the alkene formed in greatest amount is that which corresponded to removal of the
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
from the alpha-carbon having the fewest hydrogen
substituent
In organic chemistry, a substituent is one or a group of atoms that replaces (one or more) atoms, thereby becoming a moiety in the resultant (new) molecule.
The suffix ''-yl'' is used when naming organic compounds that contain a single bond r ...
s. For example, when
2-iodobutane is treated with alcoholic
potassium hydroxide
Potassium hydroxide is an inorganic compound with the formula K OH, and is commonly called caustic potash.
Along with sodium hydroxide (NaOH), KOH is a prototypical strong base. It has many industrial and niche applications, most of which utili ...
(KOH),
but-2-ene is the major product and
but-1-ene is the minor product.
:
More generally, Zaytsev's rule predicts that in an elimination reaction the most substituted product will be the most stable, and therefore the most favored. The rule makes no generalizations about the
stereochemistry
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereoisomers, which are defined ...
of the newly formed alkene, but only the
regiochemistry
In organic chemistry, regioselectivity is the preference of chemical bonding or breaking in one direction over all other possible directions. It can often apply to which of many possible positions a reagent will affect, such as which proton a str ...
of the elimination reaction. While effective at predicting the favored product for many elimination reactions, Zaytsev's rule is subject to many exceptions.
Many of them include exceptions under Hofmann product (analogous to Zaytsev product). These include compounds having quaternary nitrogen and leaving groups like NR
3+, SO
3H, etc. In these eliminations the Hofmann product is preferred. In case the leaving group is halogens, except fluorine; others give the Zaytsev product.
History

Alexander Zaytsev first published his observations regarding the products of elimination reactions in
''Justus Liebigs Annalen der Chemie'' in 1875.
Although the paper contained some original research done by Zaytsev's students, it was largely a literature review and drew heavily upon previously published work.
In it, Zaytsev proposed a purely empirical rule for predicting the favored regiochemistry in the
dehydrohalogenation
In chemistry, dehydrohalogenation is an elimination reaction which removes a hydrogen halide from a substrate (chemistry), substrate. The reaction is usually associated with the synthesis of alkenes, but it has wider applications.
Dehydrohalogen ...
of alkyl iodides, though it turns out that the rule is applicable to a variety of other elimination reactions as well. While Zaytsev's paper was well referenced throughout the 20th century, it was not until the 1960s that textbooks began using the term "Zaytsev's rule".
[
Zaytsev was not the first chemist to publish the rule that now bears his name. Aleksandr Nikolaevich Popov published an empirical rule similar to Zaytsev's in 1872, and presented his findings at the University of Kazan in 1873. Zaytsev had cited Popov's 1872 paper in previous work and worked at the University of Kazan, and was thus probably aware of Popov's proposed rule. In spite of this, Zaytsev's 1875 ''Liebigs Annalen'' paper makes no mention of Popov's work.][
Any discussion of Zaytsev's rule would be incomplete without mentioning Vladimir Vasilyevich Markovnikov. Zaytsev and Markovnikov both studied under Alexander Butlerov, taught at the University of Kazan during the same period, and were bitter rivals. Markovnikov, who published in 1870 what is now known as ]Markovnikov's rule
In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870.
Explanation
The rule states that with the addition of a ...
, and Zaytsev held conflicting views regarding elimination reactions: the former believed that the least substituted alkene would be favored, whereas the latter felt the most substituted alkene would be the major product. Perhaps one of the main reasons Zaytsev began investigating elimination reactions was to disprove his rival.[ Zaytsev published his rule for elimination reactions just after Markovnikov published the first article in a three-part series in '' Comptes Rendus'' detailing his rule for addition reactions.][
]
Thermodynamic considerations
The hydrogenation
Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or Saturated ...
of alkenes to alkane
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in whi ...
s is exothermic
In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e ...
. The amount of energy released during a hydrogenation reaction, known as the heat of hydrogenation, is inversely related to the stability of the starting alkene: the more stable the alkene, the lower its heat of hydrogenation. Examining the heats of hydrogenation for various alkenes reveals that stability increases with the amount of substitution.
The increase in stability associated with additional substitutions is the result of several factors. Alkyl
In organic chemistry, an alkyl group is an alkane missing one hydrogen.
The term ''alkyl'' is intentionally unspecific to include many possible substitutions.
An acyclic alkyl has the general formula of . A cycloalkyl group is derived from a cy ...
groups are electron donating by inductive effect, and increase the electron density on the sigma bond of the alkene. Also, alkyl groups are sterically large, and are most stable when they are far away from each other. In an alkane, the maximum separation is that of the tetrahedral
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
bond angle, 109.5°. In an alkene, the bond angle increases to near 120°. As a result, the separation between alkyl groups is greatest in the most substituted alkene.
Hyperconjugation, which describes the stabilizing interaction between the HOMO
''Homo'' () is a genus of great ape (family Hominidae) that emerged from the genus ''Australopithecus'' and encompasses only a single extant species, ''Homo sapiens'' (modern humans), along with a number of extinct species (collectively called ...
of the alkyl group and the LUMO
In chemistry, HOMO and LUMO are types of molecular orbitals. The acronyms stand for ''highest occupied molecular orbital'' and ''lowest unoccupied molecular orbital'', respectively. HOMO and LUMO are sometimes collectively called the ''frontie ...
of the double bond, also helps explain the influence of alkyl substitutions on the stability of alkenes. In regards to orbital hybridization
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new ''hybrid orbitals'' (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to f ...
, a bond between an sp2 carbon and an sp3 carbon is stronger than a bond between two sp3-hybridized carbons. Computations reveal a dominant stabilizing hyperconjugation effect of 6 kcal/mol per alkyl group.
Steric effects
In E2 elimination reactions, a base abstracts a proton that is beta to a leaving group, such as a halide. The removal of the proton and the loss of the leaving group occur in a single, concerted step to form a new double bond. When a small, unhindered base – such as sodium hydroxide
Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula . It is a white solid ionic compound consisting of sodium cations and hydroxide anions .
Sodium hydroxide is a highly corrosive base (chemistry), ...
, sodium methoxide
Sodium methoxide is the simplest sodium alkoxide. With the formula , it is a white solid, which is formed by the deprotonation of methanol. It is a widely used reagent in industry and the laboratory. It is also a dangerously caustic base.
...
, or sodium ethoxide
Sodium ethoxide, also referred to as sodium ethanolate, is the Ionic compound, ionic, organic compound with the formula , , or NaOEt (Et = ethyl group, ethyl). It is a white solid, although impure samples appear yellow or brown. It dissolves in p ...
– is used for an E2 elimination, the Zaytsev product is typically favored over the least substituted alkene, known as the Hofmann product. For example, treating 2-Bromo-2-methyl butane with sodium ethoxide in ethanol produces the Zaytsev product with moderate selectivity.
:
Due to steric interactions, a bulky base – such as potassium ''tert''-butoxide, triethylamine
Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. Like triethanolamine and the tetraethylammonium ion, it is often abbreviated TEA. It is a colourless volatile liquid with a strong fishy odor remini ...
, or 2,6-lutidine – cannot readily abstract the proton that would lead to the Zaytsev product. In these situations, a less sterically hindered proton is preferentially abstracted instead. As a result, the Hofmann product is typically favored when using bulky bases. When 2-Bromo-2-methyl butane is treated with potassium ''tert''-butoxide instead of sodium ethoxide, the Hofmann product is favored.
:
Steric interactions within the substrate also prevent the formation of the Zaytsev product. These intramolecular interactions are relevant to the distribution of products in the Hofmann elimination reaction, which converts amine
In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
s to alkenes. In the Hofmann elimination, treatment of a quaternary ammonium iodide salt with silver oxide
Silver oxide is the chemical compound with the formula Ag2 O. It is a fine black or dark brown powder that is used to prepare other silver compounds.
Preparation
Silver oxide can be prepared by combining aqueous solutions of silver nitrate and ...
produces hydroxide ions, which act as a base and eliminate the tertiary amine to give an alkene.
:
In the Hofmann elimination, the least substituted alkene is typically favored due to intramolecular steric interactions. The quaternary ammonium group is large, and interactions with alkyl groups on the rest of the molecule are undesirable. As a result, the conformation necessary for the formation of the Zaytsev product is less energetically favorable than the conformation required for the formation of the Hofmann product. As a result, the Hofmann product is formed preferentially. The Cope elimination is very similar to the Hofmann elimination in principle but occurs under milder conditions. It also favors the formation of the Hofmann product, and for the same reasons.
Stereochemistry
In some cases, the stereochemistry of the starting material can prevent the formation of the Zaytsev product. For example, when menthyl chloride is treated with sodium ethoxide, the Hofmann product is formed exclusively, but in very low yield:
:
This result is due to the stereochemistry of the starting material. E2 eliminations require ''anti''-periplanar geometry, in which the proton and leaving group lie on opposite sides of the C-C bond, but in the same plane. When menthyl chloride is drawn in the chair conformation, it is easy to explain the unusual product distribution.
:
Formation of the Zaytsev product requires elimination at the 2-position, but the isopropyl group – not the proton – is ''anti''-periplanar to the chloride leaving group; this makes elimination at the 2-position impossible. In order for the Hofmann product to form, elimination must occur at the 6-position. Because the proton at this position has the correct orientation relative to the leaving group, elimination can and does occur. As a result, this particular reaction produces only the Hofmann product.
See also
*Markovnikov's rule
In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870.
Explanation
The rule states that with the addition of a ...
* Hofmann elimination
* Cope elimination
References
Bibliography
*
External links
Online course of chemistry
English Translation of 1875 German article on 'The order of addition and of elimination of hydrogen and iodine in organic compounds' by Alexander Zaytsev.
{{DEFAULTSORT:Zaytsev's Rule
Eponymous chemical rules
Physical organic chemistry
1875 in science