HOME

TheInfoList



OR:

Young stellar object (YSO) denotes a star in its early stage of evolution. This class consists of two groups of objects:
protostar A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. The p ...
s and
pre-main-sequence star A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope o ...
s.


Classification by spectral energy distribution

A star forms by accumulation of material that falls in to a protostar from a
circumstellar disk A Circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the res ...
or envelope. Material in the disk is cooler than the surface of the protostar, so it radiates at longer wavelengths of light producing excess infrared emission. As material in the disk is depleted, the infrared excess decreases. Thus, YSOs are usually classified into evolutionary stages based on the slope of their
spectral energy distribution A spectral energy distribution (SED) is a plot of energy versus frequency or wavelength of light (not to be confused with a 'spectrum' of flux density vs frequency or wavelength). It is used in many branches of astronomy to characterize astron ...
in the mid-
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
, using a scheme introduced by Lada (1987). He proposed three classes (I, II and III), based on the values of intervals of spectral index \alpha \,: \alpha=\frac. Here \lambda \, is wavelength, and F_\lambda is
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
density. The \alpha \, is calculated in the wavelength interval of 2.2–20 m ( near- and
mid-infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
region). Andre ''et al.'' (1993) discovered a class 0: objects with strong submillimeter emission, but very faint at <10m. Greene ''et al.'' (1994) added a fifth class of "flat spectrum" sources. *Class 0 sources – undetectable at <20m *Class I sources have >0.3 *Flat spectrum sources have 0.3>>-0.3 *Class II sources have -0.3>>-1.6 *Class III sources have <-1.6 This classification schema roughly reflects evolutionary sequence. It is believed that most deeply embedded Class 0 sources evolve towards Class I stage, dissipating their
circumstellar envelope A circumstellar envelope (CSE) is a part of a star that has a roughly spherical shape and is not gravitationally bound to the star core. Usually circumstellar envelopes are formed from the dense stellar wind, or they are present before the formati ...
s. Eventually they become optically visible on the
stellar birthline The stellar birthline is a predicted line on the Hertzsprung–Russell diagram that relates the effective temperature and luminosity of pre-main-sequence stars at the start of their contraction. Prior to this point, the objects are accreting pro ...
as pre-main-sequence stars. Class II objects have circumstellar disks and correspond roughly to classical
T Tauri star T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus Molecular Cloud, Taurus star-forming region. They are found near mo ...
s, while Class III stars have lost their disks and correspond approximately to weak-line T Tauri stars. An intermediate stage where disks can only be detected at longer wavelengths (e.g., at 24m) are known as transition-disk objects.


Characteristics

YSOs are also associated with early star evolution phenomena: jets and
bipolar outflow A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae). Protostars I ...
s, disk winds,
masers A maser is a device that produces coherent electromagnetic waves ( microwaves), through amplification by stimulated emission. The term is an acronym for microwave amplification by stimulated emission of radiation. Nikolay Basov, Alexander Pro ...
,
Herbig–Haro object Herbig–Haro (HH) objects are bright patches of nebula, nebulosity associated with newborn stars. They are formed when narrow jets of partially plasma (physics), ionised gas ejected by stars collide with nearby clouds of gas and dust at several ...
s, and
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are sim ...
s (circumstellar disks or proplyds).


Classification of YSOs by mass

These stars may be differentiated by mass: Massive YSOs, intermediate-mass YSOs, and
brown dwarf Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
s.


Gallery

File:Young stellar jet MHO 2147.jpg, Young stellar jet MHO 2147


See also

*
Bok globule In astronomy, Bok globules are isolated and relatively small dark nebulae containing dense cosmic dust and gas from which star formation may take place. Bok globules are found within H II regions, and typically have a mass of about two to 50 sol ...


References


External links

{{DEFAULTSORT:Young Stellar Object Star formation Star types