Weak Gravitational Lensing
   HOME

TheInfoList



OR:

While the presence of any mass bends the path of light passing near it, this effect rarely produces the giant arcs and multiple images associated with strong gravitational lensing. Most lines of sight in the universe are thoroughly in the weak lensing regime, in which the
deflection Deflection or deflexion may refer to: Board games * Deflection (chess), a tactic that forces an opposing chess piece to leave a square * Khet (game), formerly ''Deflexion'', an Egyptian-themed chess-like game using lasers Mechanics * Deflection ...
is impossible to detect in a single background source. However, even in these cases, the presence of the foreground mass can be detected, by way of a systematic alignment of background sources around the lensing mass. Weak gravitational lensing is thus an intrinsically statistical measurement, but it provides a way to measure the masses of astronomical objects without requiring assumptions about their composition or dynamical state.


Methodology

Gravitational lensing acts as a
coordinate transformation In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
that distorts the images of background objects (usually galaxies) near a foreground mass. The transformation can be split into two terms, the convergence and shear. The convergence term magnifies the background objects by increasing their size, and the shear term stretches them tangentially around the foreground mass. To measure this tangential alignment, it is necessary to measure the ellipticities of the background galaxies and construct a statistical estimate of their systematic alignment. The fundamental problem is that galaxies are not intrinsically circular, so their measured ellipticity is a combination of their intrinsic ellipticity and the gravitational lensing shear. Typically, the intrinsic ellipticity is much greater than the shear (by a factor of 3-300, depending on the foreground mass). The measurements of many background galaxies must be combined to average down this "shape noise". The orientation of intrinsic ellipticities of galaxies should be almost entirely random, so any systematic alignment between multiple galaxies can generally be assumed to be caused by lensing. Another major challenge for weak lensing is correction for the point spread function (PSF) due to instrumental and atmospheric effects, which causes the observed images to be smeared relative to the "true sky". This smearing tends to make small objects more round, destroying some of the information about their true ellipticity. As a further complication, the PSF typically adds a small level of ellipticity to objects in the image, which is not at all random, and can in fact mimic a true lensing signal. Even for the most modern telescopes, this effect is usually at least the same order of magnitude as the gravitational lensing shear, and is often much larger. Correcting for the PSF requires building for the telescope a model for how it varies across the field. Stars in our own galaxy provide a direct measurement of the PSF, and these can be used to construct such a model, usually by interpolating between the points where stars appear on the image. This model can then be used to reconstruct the "true" ellipticities from the smeared ones. Ground-based and space-based data typically undergo distinct reduction procedures due to the differences in instruments and observing conditions. Angular diameter distances to the lenses and background sources are important for converting the lensing observables to physically meaningful quantities. These distances are often estimated using
photometric redshift A photometric redshift is an estimate for the recession velocity of an astronomical object such as a galaxy or quasar, made without measuring its spectrum. The technique uses photometry (that is, the brightness of the object viewed through various ...
s when spectroscopic redshifts are unavailable. Redshift information is also important in separating the background source population from other galaxies in the foreground, or those associated with the mass responsible for the lensing. With no redshift information, the foreground and background populations can be split by an
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's li ...
or a
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
cut, but this is much less accurate.


Weak lensing by clusters of galaxies

Galaxy clusters A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-la ...
are the largest
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
ally bound structures in the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. Acc ...
with approximately 80% of cluster content in the form of
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ab ...
. The gravitational fields of these clusters deflect light-rays traveling near them. As seen from
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, this effect can cause dramatic distortions of a background source object detectable by eye such as multiple images, arcs, and rings (cluster strong lensing). More generally, the effect causes small, but statistically coherent, distortions of background sources on the order of 10% (cluster weak lensing).
Abell 1689 Abell 1689 is a galaxy cluster in the constellation Virgo (constellation), Virgo over 2.3 billion light-years away. Details Abell 1689 is one of the biggest and most massive galaxy clusters known and acts as a gravitational lens, distorting the i ...
, CL0024+17, and the Bullet Cluster are among the most prominent examples of lensing clusters.


History

The effects of cluster strong lensing were first detected by Roger Lynds of the
National Optical Astronomy Observatories The National Optical Astronomy Observatory (NOAO) was the United States national observatory for ground-based nighttime ultraviolet-optical-infrared (OUVIR) astronomy. The National Science Foundation (NSF) funded NOAO to provide forefront astronom ...
and Vahe Petrosian of
Stanford University Stanford University, officially Leland Stanford Junior University, is a private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. Stanford is consider ...
who discovered giant luminous arcs in a survey of galaxy clusters in the late 1970s. Lynds and Petrosian published their findings in 1986 without knowing the origin of the arcs. In 1987, Genevieve Soucail of the
Toulouse Observatory The Toulouse Observatory (french: Observatoire de Toulouse) is located in Toulouse, France and was established in 1733. It was founded by ''l'Académie des Sciences, Inscriptions et Belles-Lettres de Toulouse'' ("Academy of Science, Inscriptions ...
and her collaborators presented data of a blue ring-like structure in
Abell 370 Abell 370 is a galaxy cluster located nearly 5 billion light-years away from the Earth (at redshift ''z'' = 0.375), in the constellation Cetus. Its core is made up of several hundred galaxies. It was catalogued by George Abell, and is the most ...
and proposed a gravitational lensing interpretation. The first cluster weak lensing analysis was conducted in 1990 by J. Anthony Tyson of
Bell Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
and collaborators. Tyson et al. detected a coherent alignment of the ellipticities of the faint blue galaxies behind both
Abell 1689 Abell 1689 is a galaxy cluster in the constellation Virgo (constellation), Virgo over 2.3 billion light-years away. Details Abell 1689 is one of the biggest and most massive galaxy clusters known and acts as a gravitational lens, distorting the i ...
and CL 1409+524. Lensing has been used as a tool to investigate a tiny fraction of the thousands of known galaxy clusters. Historically, lensing analyses were conducted on galaxy clusters detected via their
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
content (e.g. from
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
or
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
surveys). The sample of galaxy clusters studied with lensing was thus subject to various selection effects; for example, only the most luminous clusters were investigated. In 2006, David Wittman of the
University of California at Davis The University of California, Davis (UC Davis, UCD, or Davis) is a public land-grant research university near Davis, California. Named a Public Ivy, it is the northernmost of the ten campuses of the University of California system. The institut ...
and collaborators published the first sample of galaxy clusters detected via their lensing signals, completely independent of their baryon content. Clusters discovered through lensing are subject to mass selection effects because the more massive clusters produce lensing signals with higher
signal-to-noise Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal (electrical engineering), signal to the level of background Noise (signal processing), noise. SNR is defined as the ratio ...
.


Observational products

The projected
mass density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
can be recovered from the measurement of the ellipticities of the lensed background galaxies through techniques that can be classified into two types: direct reconstruction and
inversion Inversion or inversions may refer to: Arts * , a French gay magazine (1924/1925) * ''Inversion'' (artwork), a 2005 temporary sculpture in Houston, Texas * Inversion (music), a term with various meanings in music theory and musical set theory * ...
. However, a mass distribution reconstructed without knowledge of the
magnification Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification". When this number is less than one, it refers to a reduction in siz ...
suffers from a limitation known as the mass sheet degeneracy, where the cluster surface mass density κ can be determined only up to a
transformation Transformation may refer to: Science and mathematics In biology and medicine * Metamorphosis, the biological process of changing physical form after birth or hatching * Malignant transformation, the process of cells becoming cancerous * Trans ...
\kappa \rightarrow \kappa^ = \lambda \kappa+(1-\lambda) where λ is an arbitrary constant. This degeneracy can be broken if an independent measurement of the magnification is available because the magnification is not
invariant Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iteratio ...
under the aforementioned degeneracy transformation. Given a
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ob ...
for the cluster, which can be determined by using a reconstructed mass distribution or optical or X-ray data, a model can be fit to the shear profile as a function of clustrocentric radius. For example, the singular isothermal sphere (SIS) profile and the Navarro-Frenk-White (NFW) profile are two commonly used
parametric model In statistics, a parametric model or parametric family or finite-dimensional model is a particular class of statistical models. Specifically, a parametric model is a family of probability distributions that has a finite number of parameters. Def ...
s. Knowledge of the lensing cluster
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
and the redshift distribution of the background galaxies is also necessary for estimation of the mass and size from a model fit; these redshifts can be measured precisely using
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
or estimated using photometry. Individual mass estimates from weak lensing can only be derived for the most massive clusters, and the accuracy of these mass estimates are limited by projections along the line of sight.


Scientific implications

Cluster mass estimates determined by lensing are valuable because the method requires no assumption about the dynamical state or star formation history of the cluster in question. Lensing mass maps can also potentially reveal "dark clusters," clusters containing overdense concentrations of dark matter but relatively insignificant amounts of baryonic matter. Comparison of the dark matter distribution mapped using lensing with the distribution of the baryons using optical and X-ray data reveals the interplay of the dark matter with the stellar and
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
components. A notable example of such a joint analysis is the so-called Bullet Cluster. The Bullet Cluster data provide constraints on models relating light, gas, and dark matter distributions such as Modified Newtonian dynamics (MOND) and Λ-Cold Dark Matter (Λ-CDM). In principle, since the number density of clusters as a function of mass and redshift is sensitive to the underlying
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
, cluster counts derived from large weak lensing surveys should be able to constrain cosmological parameters. In practice, however, projections along the line of sight cause many
false positives A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result ...
. Weak lensing can also be used to
calibrate In measurement technology and metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of known ...
the mass-observable relation via a stacked weak lensing signal around an ensemble of clusters, although this relation is expected to have an intrinsic scatter. In order for lensing clusters to be a precision probe of cosmology in the future, the projection effects and the scatter in the lensing mass-observable relation need to be thoroughly characterized and modeled.


Galaxy-galaxy lensing

Galaxy-galaxy lensing is a specific type of weak (and occasionally strong)
gravitational lensing A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known ...
, in which the foreground object responsible for distorting the shapes of background galaxies is itself an individual field galaxy (as opposed to a
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-l ...
or the
large-scale structure of the cosmos The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
). Of the three typical mass regimes in weak lensing, galaxy-galaxy lensing produces a "mid-range" signal (shear correlations of ~1%) that is weaker than the signal due to cluster lensing, but stronger than the signal due to cosmic shear.


History

J.A. Tyson and collaborators first postulated the concept of galaxy-galaxy lensing in 1984, though the observational results of their study were inconclusive. It was not until 1996 that evidence of such distortion was tentatively discovered, with the first statistically significant results not published until the year 2000. Since those initial discoveries, the construction of larger, high resolution telescopes and the advent of dedicated wide field galaxy surveys have greatly increased the observed number density of both background source and foreground lens galaxies, allowing for a much more robust statistical sample of galaxies, making the lensing signal much easier to detect. Today, measuring the shear signal due to galaxy-galaxy lensing is a widely used technique in
observational astronomy Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical m ...
and
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
, often used in parallel with other measurements in determining physical characteristics of foreground galaxies.


Stacking

Much like in cluster-scale weak lensing, detection of a galaxy-galaxy shear signal requires one to measure the shapes of background source galaxies, and then look for statistical shape correlations (specifically, source galaxy shapes should be aligned tangentially, relative to the lens center.) In principle, this signal could be measured around any individual foreground lens. In practice, however, due to the relatively low mass of field lenses and the inherent randomness in intrinsic shape of background sources (the "shape noise"), the signal is impossible to measure on a galaxy by galaxy basis. However, by combining the signals of many individual lens measurements together (a technique known as "stacking"), the
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in deci ...
will improve, allowing one to determine a statistically significant signal, averaged over the entire lens set.


Scientific applications

Galaxy-galaxy lensing (like all other types of gravitational lensing) is used to measure several quantities pertaining to
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
: ;Mass density profiles: Using techniques similar to those in cluster-scale lensing, galaxy-galaxy lensing can provide information about the shape of mass density profiles, though these profiles correspond to galaxy-sized objects instead of larger clusters or groups. Given a high enough number density of background sources, a typical galaxy-galaxy mass density profile can cover a wide range of distances (from ~1 to ~100 effective radii). Since the effects of lensing are insensitive to the matter type, a galaxy-galaxy mass density profile can be used to probe a wide range of matter environments: from the central cores of galaxies where
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
s dominate the total mass fraction, to the outer halos where
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ab ...
is more prevalent. ;Mass-to-light ratios: Comparing the measured mass to the
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
(averaged over the entire galaxy stack) in a specific
filter Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
, galaxy-galaxy lensing can also provide insight into the
mass to light ratio In astrophysics and physical cosmology the mass-to-light ratio, normally designated with the Greek letter upsilon, , is the quotient between the total mass of a spatial volume (typically on the scales of a galaxy or a cluster) and its luminosity ...
s of field galaxies. Specifically, the quantity measured through lensing is the total (or virial) mass to light ratio – again due to the insensitivity of lensing to matter type. Assuming that luminous matter can trace dark matter, this quantity is of particular importance, since measuring the ratio of luminous (baryonic) matter to total matter can provide information regarding the overall ratio of baryonic to dark matter in the universe. ;Galaxy mass evolution: Since the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
is finite, an observer on the Earth will see distant galaxies not as they look today, but rather as they appeared at some earlier time. By restricting the lens sample of a galaxy-galaxy lensing study to lie at only one particular redshift, it is possible to understand the mass properties of the field galaxies that existed during this earlier time. Comparing the results of several such redshift-restricted lensing studies (with each study encompassing a different redshift), one can begin to observe changes in the mass features of galaxies over a period of several
epoch In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured. The moment of epoch is usually decided by ...
s, leading towards a better understanding of the evolution of mass on the smallest cosmological scales. ;Other mass trends: Lens redshift is not the only quantity of interest that can be varied when studying mass differences between galaxy populations, and often there are several parameters used when segregating objects into galaxy-galaxy lens stacks. Two widely used criteria are galaxy
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
and
morphology Morphology, from the Greek and meaning "study of shape", may refer to: Disciplines * Morphology (archaeology), study of the shapes or forms of artifacts * Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies ...
, which act as tracers of (among other things) stellar population, galaxy age, and local mass environment. By separating lens galaxies based on these properties, and then further segregating samples based on redshift, it is possible to use galaxy-galaxy lensing to see how several different types of galaxies evolve through time.


Cosmic shear

The gravitational lensing by large-scale structure also produces an observable pattern of alignments in background galaxies, but this distortion is only ~0.1%-1% - much more subtle than cluster or galaxy-galaxy lensing. The thin lens approximation usually used in cluster and galaxy lensing does not always work in this regime, because structures can be elongated along the line of sight. Instead, the distortion can be derived by assuming that the deflection angle is always small (see Gravitational Lensing Formalism). As in the thin lens case, the effect can be written as a mapping from the unlensed angular position \vec to the lensed position \vec. The Jacobian of the transform can be written as an integral over the gravitational potential \Phi along the line of sight \frac = \delta_ + \int_0^ dr g(r) \frac where r is the
comoving distance In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. ''Proper distance'' roughly corresponds to where a distant object would be at a spec ...
, x^i are the transverse distances, and g(r) = 2 r \int^_r \left(1-\frac\right)W(r^\prime) is the ''lensing kernel'', which defines the efficiency of lensing for a distribution of sources W(r). As in the thin-lens approximation, the Jacobian can be decomposed into shear and convergence terms.


Shear correlation functions

Because large-scale cosmological structures do not have a well-defined location, detecting cosmological gravitational lensing typically involves the computation of ''shear correlation functions'', which measure the mean product of the shear at two points as a function of the distance between those points. Because there are two components of shear, three different correlation functions can be defined: \xi_(\Delta\theta) = \langle \gamma_+(\vec) \gamma_+(\vec+\vec) \rangle \xi_(\Delta\theta) = \langle \gamma_\times(\vec) \gamma_\times(\vec+\vec) \rangle \xi_(\Delta\theta)=\xi_(\Delta\theta) = \langle \gamma_+(\vec) \gamma_\times(\vec+\vec) \rangle where \gamma_ is the component along or perpendicular to \vec, and \gamma_\times is the component at 45°. These correlation functions are typically computed by averaging over many pairs of galaxies. The last correlation function, \xi_, is not affected at all by lensing, so measuring a value for this function that is inconsistent with zero is often interpreted as a sign of
systematic error Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. In statistics, an error is not necessarily a " mistak ...
. The functions \xi_ and \xi_ can be related to projections (integrals with certain weight functions) of the dark matter density correlation function, which can be predicted from theory for a cosmological model through its Fourier transform, the
matter power spectrum The matter power spectrum describes the density contrast of the universe (the difference between the local density and the mean density) as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, ...
. Because they both depend on a single scalar density field, \xi_ and \xi_ are not independent, and they can be decomposed further into ''E-mode'' and ''B-mode'' correlation functions. In analogy with electric and magnetic fields, the E-mode field is curl-free and the B-mode field is divergence-free. Because gravitational lensing can only produce an E-mode field, the B-mode provides yet another test for systematic errors. The E-mode correlation function is also known as the ''aperture mass variance'' \langle M_^2 \rangle (\theta) = \int_0^ \frac \left xi_(\phi)+\xi_(\phi)\right T_+\left(\frac\right) = \int_0^ \frac \left xi_(\phi)-\xi_(\phi)\right T_-\left(\frac\right) T_+(x) = 576\int^\infty_0 \fracJ_0(xt) _4(t)2 T_-(x) = 576\int^\infty_0 \fracJ_4(xt) _4(t)2 where J_0~ and J_4~ are
Bessel Functions Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary ...
. An exact decomposition thus requires knowledge of the shear correlation functions at zero separation, but an approximate decomposition is fairly insensitive to these values because the filters T_+~ and T_-~ are small near \theta=0~.


Weak lensing and cosmology

The ability of weak lensing to constrain the
matter power spectrum The matter power spectrum describes the density contrast of the universe (the difference between the local density and the mean density) as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, ...
makes it a potentially powerful probe of cosmological parameters, especially when combined with other observations such as the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
, supernovae, and galaxy surveys. Detecting the extremely faint cosmic shear signal requires averaging over many background galaxies, so surveys must be both deep and wide, and because these background galaxies are small, the image quality must be very good. Measuring the shear correlations at small scales also requires a high density of background objects (again requiring deep, high quality data), while measurements at large scales push for wider surveys. While weak lensing of large-scale structure was discussed as early as 1967, due to the challenges mentioned above, it was not detected until more than 30 years later when large CCD cameras enabled surveys of the necessary size and quality. In 2000, four independent groups published the first detections of cosmic shear, and subsequent observations have started to put constraints on cosmological parameters (particularly the dark matter density \Omega_m~ and power spectrum amplitude \sigma_8~) that are competitive with other cosmological probes. For current and future surveys, one goal is to use the redshifts of the background galaxies (often approximated using
photometric redshift A photometric redshift is an estimate for the recession velocity of an astronomical object such as a galaxy or quasar, made without measuring its spectrum. The technique uses photometry (that is, the brightness of the object viewed through various ...
s) to divide the survey into multiple redshift bins. The low-redshift bins will only be lensed by structures very near to us, while the high-redshift bins will be lensed by structures over a wide range of redshift. This technique, dubbed "cosmic
tomography Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, quantu ...
", makes it possible to map out the 3D distribution of mass. Because the third dimension involves not only distance but cosmic time, tomographic weak lensing is sensitive not only to the matter power spectrum today, but also to its evolution over the history of the universe, and the expansion history of the universe during that time. This is a much more valuable cosmological probe, and many proposed experiments to measure the properties of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
and
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ab ...
have focused on weak lensing, such as the
Dark Energy Survey The Dark Energy Survey (DES) is an astronomical survey designed to constrain the properties of dark energy. It uses images taken in the near-ultraviolet, visible, and near-infrared to measure the expansion of the universe using Type Ia supernov ...
,
Pan-STARRS The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1; List of observatory codes, obs. code: IAU code#F51, F51 and Pan-STARRS2 obs. code: IAU code#F52, F52) located at Haleakala Observatory, Hawaii, US, consists of astronomical c ...
, and
Large Synoptic Survey Telescope The Vera C. Rubin Observatory, previously referred to as the Large Synoptic Survey Telescope (LSST), is an astronomical observatory currently under construction in Chile. Its main task will be carrying out a synoptic astronomical survey, the Le ...
. Weak lensing also has an important effect on the
Cosmic Microwave Background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
and diffuse 21cm line radiation. Even though there are no distinct resolved sources, perturbations on the origining surface are sheared in a similar way to galaxy weak lensing, resulting in changes to the power spectrum and statistics of the observed signal. Since the source plane for the CMB and high-redshift diffuse 21 cm are at higher redshift than resolved galaxies, the lensing effect probes cosmology at higher redshifts than galaxy lensing.


Negative weak lensing

Minimal coupling of general relativity with
scalar field In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
s allows solutions like traversable wormholes stabilized by
exotic matter There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have "exotic" physical properties that would violate known laws of physics, such as a particle having a negative mass. * Hypothetical particl ...
of negative
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
. Moreover,
Modified Newtonian Dynamics Modified Newtonian dynamics (MOND) is a hypothesis that proposes a modification of Newton's law of universal gravitation to account for observed properties of galaxies. It is an alternative to the hypothesis of dark matter in terms of explaining ...
as well as some bimetric theories of gravity consider invisible
negative mass In theoretical physics, negative mass is a type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the ...
in cosmology as an alternative interpretation to dark matter, which classically has a positive mass. As the presence of exotic matter would bend spacetime and light differently than positive mass, a Japanese team at the
Hirosaki University is a Japanese national university in Hirosaki, Aomori Prefecture, Japan. Established in 1949, it comprises five faculties: Faculty of the Humanities, Faculty of Education History, Hirosaki University Medical School History, Faculty of Science ...
proposed to use "negative" weak gravitational lensing related to such negative mass. Instead of running statistical analysis on the distortion of galaxies based on the assumption of a positive weak lensing that usually reveals locations of positive mass "dark clusters", these researchers propose to locate "negative mass clumps" using negative weak lensing, i.e. where the deformation of galaxies is interpreted as being due to a diverging lensing effect producing radial distortions (similar to a
concave lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
instead of the classical
azimuthal An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematically, ...
distortions of
convex lenses A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
similar to the image produced by a fisheye). Such negative mass clumps would be located elsewhere than assumed dark clusters, as they would reside at the center of observed cosmic voids located between
galaxy filament In cosmology, galaxy filaments (subtypes: supercluster complexes, galaxy walls, and galaxy sheets) Boris V. Komberg, Andrey V. Kravtsov, Vladimir N. Lukash; "The search and investigation of the Large Groups of Quasars" ; ;R.G. Clowes; "Large Qu ...
s within the lacunar, web-like
large-scale structure of the universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
. Such test based on negative weak lensing could help to falsify cosmological models proposing exotic matter of negative mass as an alternative interpretation to dark matter.


See also

*
Large Synoptic Survey Telescope The Vera C. Rubin Observatory, previously referred to as the Large Synoptic Survey Telescope (LSST), is an astronomical observatory currently under construction in Chile. Its main task will be carrying out a synoptic astronomical survey, the Le ...


References

{{reflist, 33em


External links


Weak gravitational lensing on arxiv.orgObserving Dark Worlds
Gravitational lensing