Transcription-translation Coupling
   HOME

TheInfoList



OR:

Transcription-translation coupling is a mechanism of gene expression regulation in which synthesis of an mRNA (
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
) is affected by its concurrent decoding (
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
). In
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
s, mRNAs are translated while they are transcribed. This allows communication between
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
, the multisubunit enzyme that catalyzes transcription, and the
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
, which catalyzes translation. Coupling involves both direct physical interactions between RNA polymerase and the ribosome ("expressome" complexes), as well as ribosome-induced changes to the structure and accessibility of the intervening mRNA that affect transcription ("attenuation" and "polarity").


Significance

Bacteria depend on transcription-translation coupling for
genome integrity External linksList of journals on Medknow Publications website * Medknow Publications Medknow Publications also known as Wolters Kluwer Medknow or simply Medknow, is a publisher of academic journals on behalf of learned societies and associa ...
, termination of transcription and control of
mRNA stability In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
. Consequently, artificial disruption of transcription-translation coupling impairs the fitness of bacteria. Without coupling, genome integrity is compromised as stalled transcription complexes interfere with DNA replication and induce DNA breaks. Lack of coupling produces premature transcription termination, likely due to increased binding of termination factor
Rho Rho (uppercase Ρ, lowercase ρ or ; el, ρο or el, ρω, label=none) is the 17th letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician letter res . Its uppercase form uses the sa ...
. Degradation of prokaryotic mRNAs is accelerated by loss of coupled translation due to increased availability of target sites of
RNase E Ribonuclease E is a bacterial ribonuclease that participates in the processing of ribosomal RNA (9S to 5S rRNA) and the chemical degradation of bulk cellular RNA. Cellular localization RNase E was suggested to be a part of the cell membrane pr ...
. It has also been suggested that coupling of transcription with translation is an important mechanism of preventing formation of deleterious
R-loop An R-loop is a three-stranded nucleic acid structure, composed of a DNA: RNA hybrid and the associated non-template single-stranded DNA. R-loops may be formed in a variety of circumstances, and may be tolerated or cleared by cellular components. ...
s. While transcription-translation coupling is likely prevalent across prokaryotic organisms, not all species are dependent on it. Unlike ''Escherichia coli'', in ''
Bacillus subtilis ''Bacillus subtilis'', known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacillu ...
'' transcription significantly outpaces translation, and coupling consequently does not occur.


Mechanisms

Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent changes to nascent mRNA availability to transcription termination factor Rho ("polarity").


Expressome complex

The expressome is a supramolecular complex consisting of RNA polymerase and a trailing ribosome linked by a shared mRNA transcript. It is supported by the transcription factors NusG and NusA, which interact with both RNA polymerase and the ribosome to couple the complexes together. When coupled by transcription factor NusG, the ribosome binds newly synthesized mRNA and prevents formation of secondary structures that inhibit transcription. Formation of an expressome complex also aids transcription elongation by the trailing ribosome opposing back-tracking of RNA polymerase. Three-dimensional models of ribosome-RNA polymerase expressome complexes have been determined by cryo-electron microscopy.


Ribosome-mediated attenuation

Ribosome-mediated attenuation is a gene expression mechanism in which a transcriptional termination signal is regulated by translation. Attenuation occurs at the start of some prokaryotic
operons In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splic ...
at sequences called "attenuators", which have been identified in operons encoding amino acid biosynthesis enzymes, pyrimidine biosynthesis enzymes and antibiotic resistance factors. The attenuator functions via a set of mRNA sequence elements that coordinate the status of translation to a transcription termination signal: * A short
open reading frame In molecular biology, open reading frames (ORFs) are defined as spans of DNA sequence between the start and stop codons. Usually, this is considered within a studied region of a prokaryotic DNA sequence, where only one of the six possible readin ...
encoding a "leader peptide" * A transcription pause sequence * A "control region" * A transcription termination signal Once the start of the leader open reading frame has been transcribed, RNA polymerase pauses due to folding of the nascent mRNA. This programmed arrest of transcription gives time for translation of the leader peptide to commence, and transcription to resume once coupled to translation. The downstream "control region" then modulates the elongation rate of either the ribosome or RNA polymerase. The factor determining this depends on the function of the downstream genes (e.g. the operon encoding enzymes involved in the synthesis of histidine contains a series of histidine codons is the control region). The role of the control region is to modulate whether transcription remains coupled to translation depending on the cellular state (e.g. a low availability of histidine slows translation leading to uncoupling, while high availability of histidine permits efficient translation and maintains coupling). Finally, the transcription terminator sequence is transcribed. Whether transcription is coupled to translation determines whether this stops transcription. The terminator requires folding of the mRNA, and by unwinding mRNA structures the ribosome elects the formation of either of two alternative structures: the terminator, or a competing fold termed the "antiterminator". For amino acid biosynthesis operons, these allow the gene expression machinery to sense the abundance of the amino acid produced by the encoded enzymes, and adjust the level of downstream gene expression accordingly: transcription occurring only if the amino acid abundance is low and the demand for the enzymes is therefore high. Examples include the histidine (''his'') and tryptophan (''trp'') biosynthetic operons. The term "attenuation" was introduced to describe the ''his'' operon. While it is typically used to describe biosynthesis operons of amino acids and other metabolites, programmed transcription termination that does not occur at the end of a gene was first identified in
λ phage ''Enterobacteria phage λ'' (lambda phage, coliphage λ, officially ''Escherichia virus Lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Leder ...
. The discovery of attenuation was significant as it represented a regulatory mechanism distinct from repression. The ''trp'' operon is regulated by both attenuation and repression, and was the first evidence that gene expression regulation mechanisms can be overlapping or redundant.


Polarity

"Polarity" is a gene expression mechanism in which transcription terminates prematurely due to a loss of coupling between transcription and translation. Transcription outpaces translation when the ribosome pauses or encounters a
premature stop codon In genetics, a nonsense mutation is a point mutation in a sequence of DNA that results in a premature stop codon, or a ''nonsense codon'' in the transcribed mRNA, and in leading to a truncated, incomplete, and usually nonfunctional protein produc ...
. This allows the transcription termination factor
Rho Rho (uppercase Ρ, lowercase ρ or ; el, ρο or el, ρω, label=none) is the 17th letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician letter res . Its uppercase form uses the sa ...
to bind the mRNA and terminate mRNA synthesis. Consequently, genes that are downstream in the
operon In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splic ...
are not transcribed, and therefore not expressed. Polarity serves as mRNA quality control, allowing unused transcripts to be terminated prematurely, rather than synthesized and degraded. The term "polarity" was introduced to describe the observation that the order of genes within an operon is important: a nonsense mutation within an upstream gene effects the transcription of downstream genes. Furthermore, the position of the nonsense mutation within the upstream gene modulates the "degree of polarity", with nonsense mutations at the start of the upstream genes exerting stronger polarity (more reduced transcription) on downstream genes. Unlike the mechanism of attenuation, which involves
intrinsic termination Intrinsic, or rho-independent termination, is a process in prokaryotes to signal the end of transcription and release the newly constructed RNA molecule. In prokaryotes such as E. coli, transcription is terminated either by a rho-dependent proc ...
of transcription at well-defined programmed sites, polarity is
Rho Rho (uppercase Ρ, lowercase ρ or ; el, ρο or el, ρω, label=none) is the 17th letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician letter res . Its uppercase form uses the sa ...
-dependent and termination occurs at variable position.


Discovery

The potential for transcription and translation to regulate each other was recognized by the team of Marshall Nirenberg, who discovered that the processes are physically connected through the formation of a DNA-ribosome complex. As part of the efforts of Nirenberg's group to determine the genetic code that underlies protein synthesis, they pioneered the use of cell-free in vitro protein synthesis reactions. Analysis of these reactions revealed that protein synthesis is mRNA-dependent, and that the sequence of the mRNA strictly defines the sequence of the protein product. For this work in breaking in the genetic code, Nirenberg was jointly awarded the Nobel Prize in Physiology or Medicine in 1968. Having established that transcription and translation are linked biochemically (translation depends on the product of transcription), an outstanding question remained whether they were linked physically - whether the newly synthesized mRNA released from the DNA before it is translated, or if can translation occur concurrently with transcription. Electron micrographs of stained cell-free protein synthesis reactions revealed branched assemblies in which strings of ribosomes are linked to a central DNA fibre. DNA isolated from bacterial cells co-sediment with ribosomes, further supporting the conclusion that transcription and translation occur together. Direct contact between ribosomes and RNA polymerase are observable within these early micrographs. The potential for simultaneous regulation of transcription and translation at this junction was noted in Nirenberg's work as early as 1964.


References

{{DEFAULTSORT:Transcription-translation coupling Gene expression RNA