HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a tuple is a finite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
or ''ordered list'' of
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s or, more generally, mathematical objects, which are called the ''elements'' of the tuple. An -tuple is a tuple of elements, where is a non-negative
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. There is only one 0-tuple, called the ''empty tuple''. A 1-tuple and a 2-tuple are commonly called a singleton and an ordered pair, respectively. The term ''"infinite tuple"'' is occasionally used for ''"infinite sequences"''. Tuples are usually written by listing the elements within parentheses "" and separated by commas; for example, denotes a 5-tuple. Other types of brackets are sometimes used, although they may have a different meaning. An -tuple can be formally defined as the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of a function that has the set of the first
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s as its domain. Tuples may be also defined from ordered pairs by a recurrence starting from an ordered pair; indeed, an -tuple can be identified with the ordered pair of its first elements and its th element, for example, \left( \left( \left( 1,2 \right),3 \right),4 \right)=\left( 1,2,3,4 \right). In
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
, tuples come in many forms. Most typed
functional programming In computer science, functional programming is a programming paradigm where programs are constructed by Function application, applying and Function composition (computer science), composing Function (computer science), functions. It is a declarat ...
languages implement tuples directly as product types, tightly associated with algebraic data types, pattern matching, and destructuring assignment. Many programming languages offer an alternative to tuples, known as record types, featuring unordered elements accessed by label. A few programming languages combine ordered tuple product types and unordered record types into a single construct, as in C structs and Haskell records.
Relational database A relational database (RDB) is a database based on the relational model of data, as proposed by E. F. Codd in 1970. A Relational Database Management System (RDBMS) is a type of database management system that stores data in a structured for ...
s may formally identify their rows (records) as ''tuples''. Tuples also occur in
relational algebra In database theory, relational algebra is a theory that uses algebraic structures for modeling data and defining queries on it with well founded semantics (computer science), semantics. The theory was introduced by Edgar F. Codd. The main applica ...
; when programming the
semantic web The Semantic Web, sometimes known as Web 3.0, is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. To enable the encoding o ...
with the Resource Description Framework (RDF); in
linguistics Linguistics is the scientific study of language. The areas of linguistic analysis are syntax (rules governing the structure of sentences), semantics (meaning), Morphology (linguistics), morphology (structure of words), phonetics (speech sounds ...
; and in
philosophy Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
.


Etymology

The term originated as an abstraction of the sequence: single, couple/double, triple, quadruple, quintuple, sextuple, septuple, octuple, ..., ‑tuple, ..., where the prefixes are taken from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
names of the numerals. The unique 0-tuple is called the ''null tuple'' or ''empty tuple''. A 1‑tuple is called a ''single'' (or ''singleton''), a 2‑tuple is called an ''ordered pair'' or ''couple'', and a 3‑tuple is called a ''triple'' (or ''triplet''). The number can be any nonnegative
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. For example, a complex number can be represented as a 2‑tuple of reals, a
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
can be represented as a 4‑tuple, an octonion can be represented as an 8‑tuple, and a sedenion can be represented as a 16‑tuple. Although these uses treat ''‑tuple'' as the suffix, the original suffix was ''‑ple'' as in "triple" (three-fold) or "decuple" (ten‑fold). This originates from
medieval Latin Medieval Latin was the form of Literary Latin used in Roman Catholic Church, Roman Catholic Western Europe during the Middle Ages. It was also the administrative language in the former Western Roman Empire, Roman Provinces of Mauretania, Numidi ...
''plus'' (meaning "more") related to Greek ‑πλοῦς, which replaced the classical and late antique ''‑plex'' (meaning "folded"), as in "duplex".


Properties

The general rule for the identity of two -tuples is : (a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n) if and only if a_1=b_1,\texta_2=b_2,\text\ldots,\texta_n=b_n. Thus a tuple has properties that distinguish it from a set: # A tuple may contain multiple instances of the same element, so
tuple (1,2,2,3) \neq (1,2,3); but set \ = \. # Tuple elements are ordered: tuple (1,2,3) \neq (3,2,1), but set \ = \. # A tuple has a finite number of elements, while a set or a multiset may have an infinite number of elements.


Definitions

There are several definitions of tuples that give them the properties described in the previous section.


Tuples as functions

The 0-tuple may be identified as the empty function. For n \geq 1, the n-tuple \left(a_1, \ldots, a_n\right) may be identified with the ( surjective) function :F ~:~ \left\ ~\to~ \left\ with domain :\operatorname F = \left\ = \left\ and with codomain :\operatorname F = \left\, that is defined at i \in \operatorname F = \left\ by :F(i) := a_i. That is, F is the function defined by :\begin 1 \;&\mapsto&&\; a_1 \\ \;&\;\;\vdots&&\; \\ n \;&\mapsto&&\; a_n \\ \end in which case the equality :\left(a_1, a_2, \dots, a_n\right) = \left(F(1), F(2), \dots, F(n)\right) necessarily holds. ;Tuples as sets of ordered pairs Functions are commonly identified with their graphs, which is a certain set of ordered pairs. Indeed, many authors use graphs as the definition of a function. Using this definition of "function", the above function F can be defined as: :F ~:=~ \left\.


Tuples as nested ordered pairs

Another way of modeling tuples in set theory is as nested ordered pairs. This approach assumes that the notion of ordered pair has already been defined. # The 0-tuple (i.e. the empty tuple) is represented by the empty set \emptyset. # An -tuple, with , can be defined as an ordered pair of its first entry and an -tuple (which contains the remaining entries when : #: (a_1, a_2, a_3, \ldots, a_n) = (a_1, (a_2, a_3, \ldots, a_n)) This definition can be applied recursively to the -tuple: : (a_1, a_2, a_3, \ldots, a_n) = (a_1, (a_2, (a_3, (\ldots, (a_n, \emptyset)\ldots)))) Thus, for example: : \begin (1, 2, 3) & = (1, (2, (3, \emptyset))) \\ (1, 2, 3, 4) & = (1, (2, (3, (4, \emptyset)))) \\ \end A variant of this definition starts "peeling off" elements from the other end: # The 0-tuple is the empty set \emptyset. # For : #: (a_1, a_2, a_3, \ldots, a_n) = ((a_1, a_2, a_3, \ldots, a_), a_n) This definition can be applied recursively: : (a_1, a_2, a_3, \ldots, a_n) = ((\ldots(((\emptyset, a_1), a_2), a_3), \ldots), a_n) Thus, for example: : \begin (1, 2, 3) & = (((\emptyset, 1), 2), 3) \\ (1, 2, 3, 4) & = ((((\emptyset, 1), 2), 3), 4) \\ \end


Tuples as nested sets

Using Kuratowski's representation for an ordered pair, the second definition above can be reformulated in terms of pure
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
: # The 0-tuple (i.e. the empty tuple) is represented by the empty set \emptyset; # Let x be an -tuple (a_1, a_2, \ldots, a_n), and let x \rightarrow b \equiv (a_1, a_2, \ldots, a_n, b). Then, x \rightarrow b \equiv \. (The right arrow, \rightarrow, could be read as "adjoined with".) In this formulation: : \begin () & & &=& \emptyset \\ & & & & \\ (1) &=& () \rightarrow 1 &=& \ \\ & & &=& \ \\ & & & & \\ (1,2) &=& (1) \rightarrow 2 &=& \ \\ & & &=& \ \\ & & & & \\ (1,2,3) &=& (1,2) \rightarrow 3 &=& \ \\ & & &=& \ \\ \end


-tuples of -sets

In discrete mathematics, especially
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
and finite
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, -tuples arise in the context of various counting problems and are treated more informally as ordered lists of length . -tuples whose entries come from a set of elements are also called ''arrangements with repetition'', '' permutations of a multiset'' and, in some non-English literature, ''variations with repetition''. The number of -tuples of an -set is . This follows from the combinatorial rule of product. If is a finite set of cardinality , this number is the cardinality of the -fold Cartesian power . Tuples are elements of this product set.


Type theory

In
type theory In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of ...
, commonly used in
programming language A programming language is a system of notation for writing computer programs. Programming languages are described in terms of their Syntax (programming languages), syntax (form) and semantics (computer science), semantics (meaning), usually def ...
s, a tuple has a product type; this fixes not only the length, but also the underlying types of each component. Formally: : (x_1, x_2, \ldots, x_n) : \mathsf_1 \times \mathsf_2 \times \ldots \times \mathsf_n and the projections are term constructors: : \pi_1(x) : \mathsf_1,~\pi_2(x) : \mathsf_2,~\ldots,~\pi_n(x) : \mathsf_n The tuple with labeled elements used in the relational model has a record type. Both of these types can be defined as simple extensions of the simply typed lambda calculus. The notion of a tuple in type theory and that in set theory are related in the following way: If we consider the natural
model A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided in ...
of a type theory, and use the Scott brackets to indicate the semantic interpretation, then the model consists of some sets S_1, S_2, \ldots, S_n (note: the use of italics here that distinguishes sets from types) such that: : ![\mathsf_1!">mathsf_1.html" ;"title="![\mathsf_1">![\mathsf_1!= S_1,~[\![\mathsf_2">mathsf_1">![\mathsf_1<_a>!.html" ;"title="mathsf_1.html" ;"title="![\mathsf_1">![\mathsf_1!">mathsf_1.html" ;"title="![\mathsf_1">![\mathsf_1!= S_1,~[\![\mathsf_2!] = S_2,~\ldots,~[\![\mathsf_n]\!] = S_n and the interpretation of the basic terms is: : [\![x_1]\!] \in ! mathsf_1!~ ![x_2!">_2.html" ;"title="![x_2">![x_2!\in [\![\mathsf_2">_2">![x_2<_a>!.html" ;"title="_2.html" ;"title="![x_2">![x_2!">_2.html" ;"title="![x_2">![x_2!\in [\![\mathsf_2!],~\ldots,~[\![x_n]\!] \in [\![\mathsf_n]\!]. The -tuple of type theory has the natural interpretation as an -tuple of set theory:Steve Awodey
''From sets, to types, to categories, to sets''
2009, preprint
: ![(x_1, x_2, \ldots, x_n)!">x_1,_x_2,_\ldots,_x_n).html" ;"title="![(x_1, x_2, \ldots, x_n)">![(x_1, x_2, \ldots, x_n)!= (\,[\![x_1]\!], ![x_2!], \ldots, [\![x_n]\!]\,) The unit type has as semantic interpretation the 0-tuple.


See also

*
Arity In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and ...
* Coordinate vector *
Exponential object In mathematics, specifically in category theory, an exponential object or map object is the category theory, categorical generalization of a function space in set theory. Category (mathematics), Categories with all Product (category theory), fini ...
* Formal language * Multidimensional Expressions (OLAP) * Prime ''k''-tuple * Relation (mathematics) *
Sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
* Tuplespace * Tuple Names


Notes


References


Sources

* *
Keith Devlin Keith James Devlin (born 16 March 1947) is a British mathematician and popular science writer. Since 1987 he has lived in the United States. He has dual British-American citizenship.
, ''The Joy of Sets''. Springer Verlag, 2nd ed., 1993, , pp. 7–8 * Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, Azriel Lévy,
Foundations of school Set Theory
', Elsevier Studies in Logic Vol. 67, 2nd Edition, revised, 1973, , p. 33 * Gaisi Takeuti, W. M. Zaring, ''Introduction to Axiomatic Set Theory'', Springer GTM 1, 1971, , p. 14 * George J. Tourlakis,
Lecture Notes in Logic and Set Theory. Volume 2: Set Theory
', Cambridge University Press, 2003, , pp. 182–193


External links

* {{Authority control Data management Mathematical notation Sequences and series Basic concepts in set theory Type theory