HOME

TheInfoList



OR:

In group theory, Tietze transformations are used to transform a given presentation of a group into another, often simpler presentation of the same group. These transformations are named after Heinrich Franz Friedrich Tietze who introduced them in a paper in 1908. A presentation is in terms of ''generators'' and ''relations''; formally speaking the presentation is a pair of a set of named generators, and a set of words in the free group on the generators that are taken to be the relations. Tietze transformations are built up of elementary steps, each of which individually rather evidently takes the presentation to a presentation of an
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
group. These elementary steps may operate on generators or relations, and are of four kinds.


Adding a relation

If a relation can be derived from the existing relations then it may be added to the presentation without changing the group. Let G=〈 x , x3=1 〉 be a finite presentation for the cyclic group of order 3. Multiplying x3=1 on both sides by x3 we get x6 = x3 = 1 so x6 = 1 is derivable from x3=1. Hence G=〈 x , x3=1, x6=1 〉 is another presentation for the same group.


Removing a relation

If a relation in a presentation can be derived from the other relations then it can be removed from the presentation without affecting the group. In ''G'' = 〈 ''x'' , ''x''3 = 1, ''x''6 = 1 〉 the relation ''x''6 = 1 can be derived from ''x''3 = 1 so it can be safely removed. Note, however, that if ''x''3 = 1 is removed from the presentation the group ''G'' = 〈 ''x'' , ''x''6 = 1 〉 defines the cyclic group of order 6 and does not define the same group. Care must be taken to show that any relations that are removed are consequences of the other relations.


Adding a generator

Given a presentation it is possible to add a new generator that is expressed as a word in the original generators. Starting with ''G'' = 〈 ''x'' , ''x''3 = 1 〉 and letting ''y'' = ''x''2 the new presentation ''G'' = 〈 ''x'',''y'' , ''x''3 = 1, ''y'' = ''x''2 〉 defines the same group.


Removing a generator

If a relation can be formed where one of the generators is a word in the other generators then that generator may be removed. In order to do this it is necessary to replace all occurrences of the removed generator with its equivalent word. The presentation for the elementary abelian group of order 4, G=〈 x,y,z , x = yz, y2=1, z2=1, x=x−1 〉 can be replaced by ''G'' = 〈 ''y'',''z'' , ''y''2 = 1, ''z''2 = 1, (''yz'') = (''yz'')−1 〉 by removing ''x''.


Examples

Let ''G'' = 〈 ''x'',''y'' , ''x''3 = 1, ''y''2 = 1, (''xy'')2 = 1 〉 be a presentation for the symmetric group of degree three. The generator ''x'' corresponds to the permutation (1,2,3) and ''y'' to (2,3). Through Tietze transformations this presentation can be converted to ''G'' = 〈 ''y'', ''z'' , (''zy'')3 = 1, ''y''2 = 1, ''z''2 = 1 〉, where z corresponds to (1,2).


See also

* Nielsen Transformation * Andrews-Curtis Conjecture


References

*
Roger C. Lyndon Roger Conant Lyndon (December 18, 1917 – June 8, 1988) was an American mathematician, for many years a professor at the University of Michigan.. He is known for Lyndon words, the Curtis–Hedlund–Lyndon theorem, Craig–Lyndon interpolation a ...
,
Paul E. Schupp Paul Eugene Schupp (born March 12, 1937, died January 24, 2022) was a professor emeritus of mathematics at the University of Illinois at Urbana Champaign. He is known for his contributions to geometric group theory, computational complexity and th ...
, ''Combinatorial Group Theory'', Springer, 2001. {{isbn, 3-540-41158-5. Combinatorial group theory