HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the tensor representations of the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
are those that are obtained by taking finitely many
tensor product In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of ...
s of the fundamental representation and its dual. The irreducible factors of such a representation are also called tensor representations, and can be obtained by applying Schur functors (associated to Young tableaux). These coincide with the rational representations of the general linear group. More generally, a matrix group is any subgroup of the general linear group. A tensor representation of a matrix group is any representation that is contained in a tensor representation of the general linear group. For example, the
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
O(''n'') admits a tensor representation on the space of all trace-free symmetric tensors of order two. For orthogonal groups, the tensor representations are contrasted with the spin representations. The
classical group In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automorphism groups of Bilinear form#Symmetric, skew-symmetric an ...
s, like the
symplectic group In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic gr ...
, have the property that all finite-dimensional representations are tensor representations (by Weyl's construction), while other representations (like the metaplectic representation) exist in infinite dimensions.


References

* {{citation, author1=Roe Goodman, author2=Nolan Wallach, title=Symmetry, representations, and invariants, publisher=Springer, year=2009, chapters 9 and 10. * Bargmann, V., & Todorov, I. T. (1977). Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(''n''). Journal of Mathematical Physics, 18(6), 1141–1148. Tensors