HOME

TheInfoList



OR:

Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is the study of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
without the use of coordinates or formulae. It relies on the
axiomatic method In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contai ...
and the tools directly related to them, that is,
compass and straightedge In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
, to draw conclusions and solve problems. Only after the introduction of coordinate methods was there a reason to introduce the term "synthetic geometry" to distinguish this approach to geometry from other approaches. Other approaches to geometry are embodied in analytic and algebraic geometries, where one would use
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
and algebraic techniques to obtain geometric results. According to
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
Synthetic geometry is that which studies figures as such, without recourse to formulae, whereas analytic geometry consistently makes use of such formulae as can be written down after the adoption of an appropriate system of coordinates.
Geometry as presented by
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
in the ''Elements'' is the quintessential example of the use of the synthetic method. It was the favoured method of
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...
for the solution of geometric problems. Synthetic methods were most prominent during the 19th century when geometers rejected coordinate methods in establishing the foundations of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
and
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ...
. For example the
geometer A geometer is a mathematician whose area of study is geometry. Some notable geometers and their main fields of work, chronologically listed, are: 1000 BCE to 1 BCE * Baudhayana (fl. c. 800 BC) – Euclidean geometry, geometric algebra * ...
Jakob Steiner (1796 – 1863) hated analytic geometry, and always gave preference to synthetic methods.


Logical synthesis

The process of logical synthesis begins with some arbitrary but definite starting point. This starting point is the introduction of primitive notions or primitives and axioms about these primitives: * Primitives are the most basic ideas. Typically they include both objects and relationships. In geometry, the objects are things such as ''points'', ''lines'' and ''planes'', while a fundamental relationship is that of ''incidence'' – of one object meeting or joining with another. The terms themselves are undefined. Hilbert once remarked that instead of points, lines and planes one might just as well talk of tables, chairs and beer mugs, the point being that the primitive terms are just empty placeholders and have no intrinsic properties. *
Axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s are statements about these primitives; for example, ''any two points are together incident with just one line'' (i.e. that for any two points, there is just one line which passes through both of them). Axioms are assumed true, and not proven. They are the ''building blocks'' of geometric concepts, since they specify the properties that the primitives have. From a given set of axioms, synthesis proceeds as a carefully constructed logical argument. When a significant result is proved rigorously, it becomes a
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of ...
.


Properties of axiom sets

There is no fixed axiom set for geometry, as more than one consistent set can be chosen. Each such set may lead to a different geometry, while there are also examples of different sets giving the same geometry. With this plethora of possibilities, it is no longer appropriate to speak of "geometry" in the singular. Historically, Euclid's
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segment ...
has turned out to be
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independe ...
of the other axioms. Simply discarding it gives
absolute geometry Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates, but since these are not su ...
, while negating it yields
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
. Other consistent axiom sets can yield other geometries, such as projective, elliptic,
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ...
or affine geometry. Axioms of continuity and "betweenness" are also optional, for example, discrete geometries may be created by discarding or modifying them. Following the Erlangen program of Klein, the nature of any given geometry can be seen as the connection between symmetry and the content of the propositions, rather than the style of development.


History

Euclid's original treatment remained unchallenged for over two thousand years, until the simultaneous discoveries of the non-Euclidean geometries by
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
, Bolyai,
Lobachevsky Nikolai Ivanovich Lobachevsky ( rus, Никола́й Ива́нович Лобаче́вский, p=nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj, a=Ru-Nikolai_Ivanovich_Lobachevsky.ogg; – ) was a Russian mathematician and geometer, k ...
and
Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first r ...
in the 19th century led mathematicians to question Euclid's underlying assumptions. One of the early French analysts summarized synthetic geometry this way: :''The Elements'' of Euclid are treated by the synthetic method. This author, after having posed the ''axioms'', and formed the requisites, established the propositions which he proves successively being supported by that which preceded, proceeding always from the ''simple to compound'', which is the essential character of synthesis. The heyday of synthetic geometry can be considered to have been the 19th century, when analytic methods based on
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is si ...
and
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
were ignored by some geometers such as Jakob Steiner, in favor of a purely synthetic development of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pr ...
. For example, the treatment of the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that ...
starting from axioms of incidence is actually a broader theory (with more models) than is found by starting with a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
of dimension three. Projective geometry has in fact the simplest and most elegant synthetic expression of any geometry. In his Erlangen program,
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
played down the tension between synthetic and analytic methods: ::On the Antithesis between the Synthetic and the Analytic Method in Modern Geometry: :The distinction between modern synthesis and modern analytic geometry must no longer be regarded as essential, inasmuch as both subject-matter and methods of reasoning have gradually taken a similar form in both. We choose therefore in the text as common designation of them both the term projective geometry. Although the synthetic method has more to do with space-perception and thereby imparts a rare charm to its first simple developments, the realm of space-perception is nevertheless not closed to the analytic method, and the formulae of analytic geometry can be looked upon as a precise and perspicuous statement of geometrical relations. On the other hand, the advantage to original research of a well formulated analysis should not be underestimated, - an advantage due to its moving, so to speak, in advance of the thought. But it should always be insisted that a mathematical subject is not to be considered exhausted until it has become intuitively evident, and the progress made by the aid of analysis is only a first, though a very important, step. The close axiomatic study of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
led to the construction of the Lambert quadrilateral and the
Saccheri quadrilateral A Saccheri quadrilateral (also known as a Khayyam–Saccheri quadrilateral) is a quadrilateral with two equal sides perpendicular to the base. It is named after Giovanni Gerolamo Saccheri, who used it extensively in his book ''Euclides ab omni na ...
. These structures introduced the field of
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ...
where Euclid's parallel axiom is denied.
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
, Bolyai and
Lobachevski Nikolai Ivanovich Lobachevsky ( rus, Никола́й Ива́нович Лобаче́вский, p=nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj, a=Ru-Nikolai_Ivanovich_Lobachevsky.ogg; – ) was a Russian mathematician and geometer, kn ...
independently constructed
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
, where parallel lines have an angle of parallelism that depends on their separation. This study became widely accessible through the Poincaré disc model where
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and mea ...
s are given by
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad' ...
s. Similarly,
Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first r ...
, a student of Gauss's, constructed
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
, of which elliptic geometry is a particular case. Another example concerns
inversive geometry Inversive activities are processes which self internalise the action concerned. For example, a person who has an Inversive personality internalises his emotions from any exterior source. An inversive heat source would be a heat source where all t ...
as advanced by Ludwig Immanuel Magnus, which can be considered synthetic in spirit. The closely related operation of
reciprocation Reciprocation may refer to: * Reciprocating motion, a type of oscillatory motion, as in the action of a reciprocating saw * Reciprocation (geometry), an operation with circles that involves transforming each point in plane into its polar line a ...
expresses analysis of the plane. Karl von Staudt showed that algebraic axioms, such as commutativity and
associativity In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
of addition and multiplication, were in fact consequences of incidence of lines in geometric configurations. David Hilbert showed that the Desargues configuration played a special role. Further work was done by Ruth Moufang and her students. The concepts have been one of the motivators of
incidence geometry In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incide ...
. When
parallel lines In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. '' Parallel curves'' are curves that do not touch each other or inter ...
are taken as primary, synthesis produces affine geometry. Though Euclidean geometry is both an affine and
metric geometry In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
, in general
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
s may be missing a metric. The extra flexibility thus afforded makes affine geometry appropriate for the study of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why diffe ...
, as discussed in the history of affine geometry. In 1955 Herbert Busemann and Paul J. Kelley sounded a nostalgic note for synthetic geometry: :Although reluctantly, geometers must admit that the beauty of synthetic geometry has lost its appeal for the new generation. The reasons are clear: not so long ago synthetic geometry was the only field in which the reasoning proceeded strictly from axioms, whereas this appeal — so fundamental to many mathematically interested people — is now made by many other fields. That analytic geometric cannot replace without major losses synthetic geometry has been argued in. For example, college studies now include
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matric ...
,
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, and
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
where the subject is developed from first principles, and propositions are deduced by
elementary proof In mathematics, an elementary proof is a mathematical proof that only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis. Historically, it was once thought that certa ...
s. Today's student of geometry has axioms other than Euclid's available: see
Hilbert's axioms Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book ''Grundlagen der Geometrie'' (tr. ''The Foundations of Geometry'') as the foundation for a modern treatment of Euclidean geometry. Other well-known modern a ...
and Tarski's axioms. Ernst Kötter published a (German) report in 1901 on ''"The development of synthetic geometry from
Monge Gaspard Monge, Comte de Péluse (9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. Durin ...
to Staudt (1847)"''; (2012 Reprint as )


Proofs using synthetic geometry

Synthetic proofs of geometric theorems make use of auxiliary constructs (such as helping lines) and concepts such as equality of sides or angles and similarity and
congruence Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
of triangles. Examples of such proofs can be found in the articles Butterfly theorem, Angle bisector theorem,
Apollonius' theorem In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, t ...
, British flag theorem, Ceva's theorem,
Equal incircles theorem In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjace ...
,
Geometric mean theorem The right triangle altitude theorem or geometric mean theorem is a result in elementary geometry that describes a relation between the altitude on the hypotenuse in a right triangle and the two line segments it creates on the hypotenuse. It states ...
, Heron's formula,
Isosceles triangle theorem In geometry, the statement that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the ''pons asinorum'' (, ), typically translated as "bridge of asses". This statement is Proposition 5 of Book 1 in E ...
,
Law of cosines In trigonometry, the law of cosines (also known as the cosine formula, cosine rule, or al-Kashi's theorem) relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines stat ...
, and others that are linked to here.


Computational synthetic geometry

In conjunction with computational geometry, a computational synthetic geometry has been founded, having close connection, for example, with
matroid In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being ...
theory.
Synthetic differential geometry In mathematics, synthetic differential geometry is a formalization of the theory of differential geometry in the language of topos theory. There are several insights that allow for such a reformulation. The first is that most of the analytic d ...
is an application of
topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notio ...
theory to the foundations of
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
theory.


See also

* Foundations of geometry *
Incidence geometry In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incide ...
*
Synthetic differential geometry In mathematics, synthetic differential geometry is a formalization of the theory of differential geometry in the language of topos theory. There are several insights that allow for such a reformulation. The first is that most of the analytic d ...


Notes


References

* * * Halsted, G. B. (1896
Elementary Synthetic Geometry
via Internet Archive * Halsted, George Bruce (1906
Synthetic Projective Geometry
via
Internet Archive The Internet Archive is an American digital library with the stated mission of "universal access to all knowledge". It provides free public access to collections of digitized materials, including websites, software applications/games, music ...
. * Hilbert & Cohn-Vossen, ''Geometry and the imagination''. * * * {{Authority control Fields of geometry