A synchronous orbit is an
orbit
In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
in which an orbiting body (usually a
satellite
A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
) has a period equal to the average rotational period of the body being orbited (usually a planet), and in the same direction of rotation as that body.
Simplified meaning
A
synchronous orbit
In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
is an orbit in which the orbiting object (for example, an artificial satellite or a moon) takes the same amount of time to complete an orbit as it takes the object it is orbiting to rotate once.
Properties
A satellite in a synchronous orbit that is both
equator
The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
ial and
circular will appear to be suspended motionless above a point on the orbited planet's equator. For synchronous satellites orbiting
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
, this is also known as a
geostationary orbit
A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular orbit, circular geosynchronous or ...
. However, a synchronous orbit need not be equatorial; nor circular. A body in a non-equatorial synchronous orbit will appear to oscillate north and south above a point on the planet's equator, whereas a body in an
elliptical orbit will appear to oscillate eastward and westward. As seen from the orbited body the combination of these two motions produces a figure-8 pattern called an
analemma
In astronomy, an analemma (; ) is a diagram showing the position of the Sun in the sky as seen from a fixed location on Earth at the same Solar time#Mean solar time, mean solar time over the course of a year. The change of position is a result ...
.
Nomenclature
There are many specialized terms for synchronous orbits depending on the body orbited. The following are some of the more common ones. A synchronous orbit around
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
that is circular and lies in the equatorial plane is called a
geostationary orbit
A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular orbit, circular geosynchronous or ...
. The more general case, when the orbit is inclined to Earth's equator or is non-circular is called a
geosynchronous orbit. The corresponding terms for synchronous orbits around
Mars
Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
are
areostationary and
areosynchronous orbits.
Formula
For a stationary synchronous orbit:
: