In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a surface is a
mathematical model
A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
of the common concept of a
surface
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
. It is a generalization of a
plane, but, unlike a plane, it may be
curved; this is analogous to a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
generalizing a
straight line
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimens ...
.
There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s in the
Euclidean 3-space. The exact definition of a surface may depend on the context. Typically, in
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, a surface may cross itself (and may have other
singularities), while, in
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
and
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, it may not.
A surface is a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
of
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
two; this means that a moving point on a surface may move in two directions (it has two
degrees of freedom
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
). In other words, around almost every point, there is a ''
coordinate patch
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies th ...
'' on which a
two-dimensional
A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimension ...
coordinate system
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
is defined. For example, the surface of the Earth resembles (ideally) a sphere, and
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
and
longitude
Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
provide two-dimensional coordinates on it (except at the poles and along the
180th meridian
The 180th meridian or antimeridian is the meridian (geography), meridian 180° both east and west of the prime meridian in a Geographic coordinate system, geographical coordinate system. The longitude at this line can be given as either east ...
).
Definitions
Often, a surface is defined by
equation
In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
s that are satisfied by the
coordinate
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
s of its points. This is the case of the
graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discret ...
of a
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
of two variables. The set of the
zeros of a function of three variables is a surface, which is called an
implicit surface
In mathematics, an implicit surface is a Surface (geometry), surface in Euclidean space defined by an equation
: F(x,y,z)=0.
An ''implicit surface'' is the set of Zero of a function, zeros of a Function of several real variables, function of ...
. If the defining three-variate function is a
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
, the surface is an
algebraic surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
. For example, the
unit sphere
In mathematics, a unit sphere is a sphere of unit radius: the locus (mathematics), set of points at Euclidean distance 1 from some center (geometry), center point in three-dimensional space. More generally, the ''unit -sphere'' is an n-sphere, -s ...
is an algebraic surface, as it may be defined by the
implicit equation
In mathematics, an implicit equation is a relation of the form R(x_1, \dots, x_n) = 0, where is a function of several variables (often a polynomial). For example, the implicit equation of the unit circle is x^2 + y^2 - 1 = 0.
An implicit func ...
:
A surface may also be defined as the
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
, in some space of
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
at least 3, of a
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
of two variables (some further conditions are required to ensure that the image is not a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
). In this case, one says that one has a
parametric surface
A parametric surface is a surface in the Euclidean space \R^3 which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that oc ...
, which is ''parametrized'' by these two variables, called ''parameters''. For example, the unit sphere may be parametrized by the
Euler angles
The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189� ...
, also called
longitude
Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
and
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
by
:
Parametric equations of surfaces are often irregular at some points. For example, all but two points of the unit sphere, are the image, by the above parametrization, of exactly one pair of Euler angles (
modulo
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation.
Given two positive numbers and , mo ...
). For the remaining two points (the
north
North is one of the four compass points or cardinal directions. It is the opposite of south and is perpendicular to east and west. ''North'' is a noun, adjective, or adverb indicating Direction (geometry), direction or geography.
Etymology
T ...
and
south poles), one has , and the longitude may take any values. Also, there are surfaces for which there cannot exist a single parametrization that covers the whole surface. Therefore, one often considers surfaces which are parametrized by several parametric equations, whose images cover the surface. This is formalized by the concept of
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
: in the context of manifolds, typically in
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
and
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, a surface is a manifold of dimension two; this means that a surface is a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
such that every point has a
neighborhood
A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
which is
homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to an
open subset
In mathematics, an open set is a generalization of an open interval in the real line.
In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the met ...
of the
Euclidean plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
(see
Surface (topology)
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces a ...
and
Surface (differential geometry)
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.
Surfaces have been extensively studied from various perspective ...
). This allows defining surfaces in spaces of dimension higher than three, and even ''abstract surfaces'', which are not contained in any other space. On the other hand, this excludes surfaces that have
singularities, such as the vertex of a
conical surface
In geometry, a conical surface is an unbounded surface in three-dimensional space formed from the union of infinite lines that pass through a fixed point and a space curve.
Definitions
A (''general'') conical surface is the unbounded surface ...
or points where a surface crosses itself.
In
classical geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (pos ...
, a surface is generally defined as a
locus of a point or a line. For example, a
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is the locus of a point which is at a given distance of a fixed point, called the center; a
conical surface
In geometry, a conical surface is an unbounded surface in three-dimensional space formed from the union of infinite lines that pass through a fixed point and a space curve.
Definitions
A (''general'') conical surface is the unbounded surface ...
is the locus of a line passing through a fixed point and crossing a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
; a
surface of revolution
A surface of revolution is a Surface (mathematics), surface in Euclidean space created by rotating a curve (the ''generatrix'') one full revolution (unit), revolution around an ''axis of rotation'' (normally not Intersection (geometry), intersec ...
is the locus of a curve rotating around a line. A
ruled surface
In geometry, a Differential geometry of surfaces, surface in 3-dimensional Euclidean space is ruled (also called a scroll) if through every Point (geometry), point of , there is a straight line that lies on . Examples include the plane (mathemat ...
is the locus of a moving line satisfying some constraints; in modern terminology, a ruled surface is a surface, which is a
union of lines.
Terminology
There are several kinds of surfaces that are considered in mathematics. An unambiguous terminology is thus necessary to distinguish them when needed. A ''
topological surface'' is a surface that is a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
of dimension two (see ). A ''
differentiable surface'' is a surfaces that is a
differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
(see ). Every differentiable surface is a topological surface, but the converse is false.
A "surface" is often implicitly supposed to be contained in a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
of dimension 3, typically . A surface that is contained in a
projective space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
is called a
projective surface (see ). A surface that is not supposed to be included in another space is called an ''abstract surface''.
Examples
* The
graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discret ...
of a
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
of two variables, defined over a
connected open subset
In mathematics, an open set is a generalization of an open interval in the real line.
In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the met ...
of is a ''topological surface''. If the function is
differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
, the graph is a ''differentiable surface''.
* A
plane is both an
algebraic surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
and a differentiable surface. It is also a
ruled surface
In geometry, a Differential geometry of surfaces, surface in 3-dimensional Euclidean space is ruled (also called a scroll) if through every Point (geometry), point of , there is a straight line that lies on . Examples include the plane (mathemat ...
and a
surface of revolution
A surface of revolution is a Surface (mathematics), surface in Euclidean space created by rotating a curve (the ''generatrix'') one full revolution (unit), revolution around an ''axis of rotation'' (normally not Intersection (geometry), intersec ...
.
* A
circular cylinder (that is, the
locus of a line crossing a circle and parallel to a given direction) is an algebraic surface and a differentiable surface.
* A
circular cone (locus of a line crossing a circle, and passing through a fixed point, the ''apex'', which is outside the plane of the circle) is an algebraic surface which is not a differentiable surface. If one removes the apex, the remainder of the cone is the union of two differentiable surfaces.
* The surface of a
polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
is a topological surface, which is neither a differentiable surface nor an algebraic surface.
* A
hyperbolic paraboloid
In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.
Every pla ...
(the graph of the function ) is a differentiable surface and an algebraic surface. It is also a ruled surface, and, for this reason, is often used in
architecture
Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and construction, constructi ...
.
* A
two-sheet hyperboloid is an algebraic surface and the union of two non-intersecting differentiable surfaces.
Parametric surface
A parametric surface is the image of an open subset of the
Euclidean plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
(typically
) by a
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
, in a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, generally a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
of dimension at least three. Usually the function is supposed to be
continuously differentiable
In mathematics, a differentiable function of one Real number, real variable is a Function (mathematics), function whose derivative exists at each point in its Domain of a function, domain. In other words, the Graph of a function, graph of a differ ...
, and this will be always the case in this article.
Specifically, a parametric surface in
is given by three functions of two variables and , called ''parameters''
:
As the image of such a function may be a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
(for example, if the three functions are constant with respect to ), a further condition is required, generally that, for
almost all
In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning o ...
values of the parameters, the
Jacobian matrix
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. If this matrix is square, that is, if the number of variables equals the number of component ...
:
has
rank
A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial.
People Formal ranks
* Academic rank
* Corporate title
* Diplomatic rank
* Hierarchy ...
two. Here "almost all" means that the values of the parameters where the rank is two contain a
dense
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be use ...
open subset
In mathematics, an open set is a generalization of an open interval in the real line.
In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the met ...
of the range of the parametrization. For surfaces in a space of higher dimension, the condition is the same, except for the number of columns of the Jacobian matrix.
Tangent plane and normal vector
A point where the above Jacobian matrix has rank two is called ''regular'', or, more properly, the parametrization is called ''regular'' at .
The ''
tangent plane
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
'' at a regular point is the unique plane passing through and having a direction parallel to the two
row vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some , co ...
s of the Jacobian matrix. The tangent plane is an
affine concept, because its definition is independent of the choice of a
metric
Metric or metrical may refer to:
Measuring
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
...
. In other words, any
affine transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.
More general ...
maps the tangent plane to the surface at a point to the tangent plane to the image of the surface at the image of the point.
The ''
normal line'' at a point of a surface is the unique line passing through the point and perpendicular to the tangent plane; a ''normal vector'' is a vector which is parallel to the normal line.
For other
differential invariants of surfaces, in the neighborhood of a point, see
Differential geometry of surfaces
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth manifold, smooth Surface (topology), surfaces with various additional structures, most often, a Riemannian metric.
Surfaces have been extensiv ...
.
Irregular point and singular point
A point of a parametric surface which is not regular is irregular. There are several kinds of irregular points.
It may occur that an irregular point becomes regular, if one changes the parametrization. This is the case of the poles in the parametrization of the
unit sphere
In mathematics, a unit sphere is a sphere of unit radius: the locus (mathematics), set of points at Euclidean distance 1 from some center (geometry), center point in three-dimensional space. More generally, the ''unit -sphere'' is an n-sphere, -s ...
by
Euler angles
The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189� ...
: it suffices to permute the role of the different
coordinate axes
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
for changing the poles.
On the other hand, consider the
circular cone of parametric equation
:
The apex of the cone is the origin , and is obtained for . It is an irregular point that remains irregular, whichever parametrization is chosen (otherwise, there would exist a unique tangent plane). Such an irregular point, where the tangent plane is undefined, is said singular.
There is another kind of singular points. There are the self-crossing points, that is the points where the surface crosses itself. In other words, these are the points which are obtained for (at least) two different values of the parameters.
Graph of a bivariate function
Let be a function of two real variables, a ''
bivariate function''. This is a parametric surface, parametrized as
:
Every point of this surface is
regular, as the two first columns of the Jacobian matrix form the
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
of rank two.
Rational surface
A rational surface is a surface that may be parametrized by
rational functions
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ra ...
of two variables. That is, if are, for ,
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s in two indeterminates, then the parametric surface, defined by
:
is a rational surface.
A rational surface is an
algebraic surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
, but most algebraic surfaces are not rational.
Implicit surface
An implicit surface in a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
(or, more generally, in an
affine space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
) of dimension 3 is the set of the common zeros of a
differentiable function
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
of three variables
:
Implicit means that the equation defines implicitly one of the variables as a function of the other variables. This is made more exact by the
implicit function theorem
In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single functi ...
: if , and the partial derivative in of is not zero at , then there exists a differentiable function such that
:
in a
neighbourhood
A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of . In other words, the implicit surface is the
graph of a function
In mathematics, the graph of a function f is the set of ordered pairs (x, y), where f(x) = y. In the common case where x and f(x) are real numbers, these pairs are Cartesian coordinates of points in a plane (geometry), plane and often form a P ...
near a point of the surface where the partial derivative in is nonzero. An implicit surface has thus, locally, a parametric representation, except at the points of the surface where the three partial derivatives are zero.
Regular points and tangent plane
A point of the surface where at least one partial derivative of is nonzero is called regular. At such a point
, the tangent plane and the direction of the normal are well defined, and may be deduced, with the implicit function theorem from the definition given above, in . The direction of the normal is the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
, that is the vector
:
The tangent plane is defined by its implicit equation
:
Singular point
A singular point of an implicit surface (in
) is a point of the surface where the implicit equation holds and the three partial derivatives of its defining function are all zero. Therefore, the singular points are the solutions of a
system
A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its open system (systems theory), environment, is described by its boundaries, str ...
of four equations in three indeterminates. As most such systems have no solution, many surfaces do not have any singular point. A surface with no singular point is called ''regular'' or ''non-singular''.
The study of surfaces near their singular points and the classification of the singular points is
singularity theory
In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it ...
. A singular point is
isolated if there is no other singular point in a neighborhood of it. Otherwise, the singular points may form a curve. This is in particular the case for self-crossing surfaces.
Algebraic surface
Originally, an algebraic surface was a surface which could be defined by an implicit equation
:
where is a polynomial in three
indeterminates, with real coefficients.
The concept has been extended in several directions, by defining surfaces over arbitrary
fields, and by considering surfaces in spaces of arbitrary dimension or in
projective space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
s. Abstract algebraic surfaces, which are not explicitly embedded in another space, are also considered.
Surfaces over arbitrary fields
Polynomials with coefficients in any
field are accepted for defining an algebraic surface.
However, the field of coefficients of a polynomial is not well defined, as, for example, a polynomial with
rational
Rationality is the quality of being guided by or based on reason. In this regard, a person acts rationally if they have a good reason for what they do, or a belief is rational if it is based on strong evidence. This quality can apply to an ...
coefficients may also be considered as a polynomial with
real or complex number, complex coefficients. Therefore, the concept of ''point'' of the surface has been generalized in the following way.
Given a polynomial , let be the smallest field containing the coefficients, and be an algebraically closed extension of , of infinite transcendence degree.
[The infinite degree of transcendence is a technical condition, which allows an accurate definition of the concept of generic point.] Then a ''point'' of the surface is an element of which is a solution of the equation
:
If the polynomial has real coefficients, the field is the complex field, and a point of the surface that belongs to
(a usual point) is called a ''real point''. A point that belongs to is called ''rational over '', or simply a ''rational point'', if is the field of rational numbers.
Projective surface
A projective surface in a
projective space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
of dimension three is the set of points whose homogeneous coordinates are zeros of a single homogeneous polynomial in four variables. More generally, a projective surface is a subset of a projective space, which is a projective variety of dimension of an algebraic variety, dimension two.
Projective surfaces are strongly related to affine surfaces (that is, ordinary algebraic surfaces). One passes from a projective surface to the corresponding affine surface by setting to one some coordinate or indeterminate of the defining polynomials (usually the last one). Conversely, one passes from an affine surface to its associated projective surface (called ''projective completion'') by Homogeneous polynomial#Homogenization, homogenizing the defining polynomial (in case of surfaces in a space of dimension three), or by homogenizing all polynomials of the defining ideal (for surfaces in a space of higher dimension).
In higher dimensional spaces
One cannot define the concept of an algebraic surface in a space of dimension higher than three without a general definition of an algebraic variety and of the dimension of an algebraic variety. In fact, an algebraic surface is an ''algebraic variety of dimension two''.
More precisely, an algebraic surface in a space of dimension is the set of the common zeros of at least polynomials, but these polynomials must satisfy further conditions that may be not immediate to verify. Firstly, the polynomials must not define a variety or an algebraic set of higher dimension, which is typically the case if one of the polynomials is in the ideal (ring theory), ideal generated by the others. Generally, polynomials define an algebraic set of dimension two or higher. If the dimension is two, the algebraic set may have several irreducible components. If there is only one component the polynomials define a surface, which is a complete intersection. If there are several components, then one needs further polynomials for selecting a specific component.
Most authors consider as an algebraic surface only algebraic varieties of dimension two, but some also consider as surfaces all algebraic sets whose irreducible components have the dimension two.
In the case of surfaces in a space of dimension three, every surface is a complete intersection, and a surface is defined by a single polynomial, which is irreducible polynomial, irreducible or not, depending on whether non-irreducible algebraic sets of dimension two are considered as surfaces or not.
Topological surface
In
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a surface is generally defined as a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
of dimension two. This means that a topological surface is a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
such that every point has a neighborhood (mathematics), neighborhood that is
homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to an
open subset
In mathematics, an open set is a generalization of an open interval in the real line.
In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the met ...
of a
Euclidean plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
.
Every topological surface is homeomorphic to a polyhedral surface such that all facet (geometry), facets are triangles. The combinatorics, combinatorial study of such arrangements of triangles (or, more generally, of higher-dimensional simplexes) is the starting object of algebraic topology. This allows the characterization of the properties of surfaces in terms of purely algebraic invariant (mathematics), invariants, such as the genus (mathematics), genus and homology groups.
The homeomorphism classes of surfaces have been completely described (see
Surface (topology)
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces a ...
).
Differentiable surface
Fractal surface
In computer graphics
See also
* Area element, the area of a differential element of a surface
* Coordinate surfaces
* Hypersurface
* Perimeter, a two-dimensional equivalent
* Polyhedral surface
* Shape
* Signed distance function
* Solid figure
* Surface area
* Surface patch
* Surface integral
Footnotes
Notes
Sources
* {{citation, last=Gauss, first=Carl Friedrich, author-link=Carl Friedrich Gauss, title=General Investigations of Curved Surfaces of 1825 and 1827 , url= http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABR1255 , year=1902 , publisher=Princeton University Library
Geometry
Topology
Surfaces,
Broad-concept articles