HOME

TheInfoList



OR:

Substrate-level phosphorylation is a metabolism reaction that results in the production of
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
or GTP by the transfer of a phosphate group from a substrate directly to
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
or GDP. Transferring from a higher energy (whether phosphate group attached or not) into a lower energy product. This process uses some of the released chemical energy, the Gibbs free energy, to transfer a phosphoryl (PO3) group to ADP or GDP from another phosphorylated compound. Occurs in glycolysis and in the citric acid cycle. Unlike oxidative phosphorylation, oxidation and phosphorylation are not coupled in the process of substrate-level phosphorylation, and reactive intermediates are most often gained in the course of
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
processes in catabolism. Most ATP is generated by oxidative phosphorylation in aerobic or anaerobic respiration while substrate-level phosphorylation provides a quicker, less efficient source of ATP, independent of external electron acceptors. This is the case in human erythrocytes, which have no mitochondria, and in oxygen-depleted muscle.


Overview

Adenosine triphosphate is a major "energy currency" of the cell. The high energy bonds between the phosphate groups can be broken to power a variety of reactions used in all aspects of cell function. Substrate-level phosphorylation occurs in the cytoplasm of cells during glycolysis and in mitochondria either during the Krebs cycle or by
MTHFD1L Monofunctional C1-tetrahydrofolate synthase, mitochondrial also known as formyltetrahydrofolate synthetase, is an enzyme that in humans is encoded by the ''MTHFD1L'' gene (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like). Functio ...

EC 6.3.4.3
, an enzyme interconverting ADP + phosphate + 10-formyltetrahydrofolate to ATP + formate + tetrahydrofolate (reversibly), under both aerobic and
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: *Adhesive#Anaerobic, Anaerobic ad ...
conditions. In the pay-off phase of glycolysis, a net of 2 ATP are produced by substrate-level phosphorylation.


Glycolysis

The first substrate-level phosphorylation occurs after the conversion of 3-phosphoglyceraldehyde and Pi and NAD+ to 1,3-bisphosphoglycerate via glyceraldehyde 3-phosphate dehydrogenase. 1,3-bisphosphoglycerate is then dephosphorylated via phosphoglycerate kinase, producing 3-phosphoglycerate and ATP through a substrate-level phosphorylation. The second substrate-level phosphorylation occurs by dephosphorylating phosphoenolpyruvate, catalyzed by pyruvate kinase, producing pyruvate and ATP. During the preparatory phase, each 6-carbon glucose molecule is broken into two 3-carbon molecules. Thus, in glycolysis dephosphorylation results in the production of 4 ATP. However, the prior preparatory phase consumes 2 ATP, so the net yield in glycolysis is 2 ATP. 2 molecules of NADH are also produced and can be used in oxidative phosphorylation to generate more ATP.


Mitochondria

ATP can be generated by substrate-level phosphorylation in mitochondria in a pathway that is independent from the proton motive force. In the
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
there are three reactions capable of substrate-level phosphorylation, utilizing either phosphoenolpyruvate carboxykinase or succinate-CoA ligase, or monofunctional C1-tetrahydrofolate synthase.


Phosphoenolpyruvate carboxykinase

Mitochondrial phosphoenolpyruvate carboxykinase is thought to participate in the transfer of the phosphorylation potential from the matrix to the cytosol and vice versa. However, it is strongly favored towards GTP hydrolysis, thus it is not really considered as an important source of intra-mitochondrial substrate-level phosphorylation.


Succinate-CoA ligase

Succinate-CoA ligase is a heterodimer composed of an invariant α-subunit and a substrate-specific ß-subunit, encoded by either SUCLA2 or SUCLG2. This combination results in either an ADP-forming succinate-CoA ligase (A-SUCL, EC 6.2.1.5) or a GDP-forming succinate-CoA ligase (G-SUCL, EC 6.2.1.4). The ADP-forming succinate-CoA ligase is potentially the only matrix enzyme generating ATP in the absence of a proton motive force, capable of maintaining matrix ATP levels under energy-limited conditions, such as transient hypoxia.


Monofunctional C1-tetrahydrofolate synthase

This enzyme is encoded by
MTHFD1L Monofunctional C1-tetrahydrofolate synthase, mitochondrial also known as formyltetrahydrofolate synthetase, is an enzyme that in humans is encoded by the ''MTHFD1L'' gene (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like). Functio ...
and reversibly interconverts ADP + phosphate + 10-formyltetrahydrofolate to ATP + formate + tetrahydrofolate.


Other mechanisms

In working skeletal muscles and the brain,
Phosphocreatine Phosphocreatine, also known as creatine phosphate (CP) or PCr (Pcr), is a phosphorylated form of creatine that serves as a rapidly mobilizable reserve of high-energy phosphates in skeletal muscle, myocardium and the brain to recycle adenosine trip ...
is stored as a readily available high-energy phosphate supply, and the enzyme creatine phosphokinase transfers a phosphate from phosphocreatine to ADP to produce ATP. Then the ATP releases giving chemical energy. This is sometimes erroneously considered to be substrate-level phosphorylation, although it is a transphosphorylation.


Importance of substrate-level phosphorylation in anoxia

During
anoxia The term anoxia means a total depletion in the level of oxygen, an extreme form of hypoxia or "low oxygen". The terms anoxia and hypoxia are used in various contexts: * Anoxic waters, sea water, fresh water or groundwater that are depleted of di ...
, provision of ATP by substrate-level phosphorylation in the matrix is important not only as a mere means of energy, but also to prevent mitochondria from straining glycolytic ATP reserves by maintaining the adenine nucleotide translocator in ‘forward mode’ carrying ATP towards the cytosol.


Oxidative phosphorylation

An alternative method used to create ATP is through oxidative phosphorylation, which takes place during
cellular respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
. This process utilizes the oxidation of NADH to NAD+, yielding 3 ATP, and of FADH2 to FAD, yielding 2 ATP. The
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
stored as an electrochemical gradient of protons (H+) across the inner mitochondrial membrane is required to generate ATP from ADP and Pi (inorganic phosphate molecule), a key difference from substrate-level phosphorylation. This gradient is exploited by
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
acting as a pore, allowing H+ from the mitochondrial intermembrane space to move down its electrochemical gradient into the matrix and coupling the release of free energy to ATP synthesis. Conversely, electron transfer provides the energy required to actively pump H+ out of the matrix.


References

{{reflist Metabolism Phosphorus