HOME

TheInfoList



OR:

In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
and related areas of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a subspace of a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
(''X'', ''𝜏'') is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
''S'' of ''X'' which is equipped with a
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
induced from that of ''𝜏'' called the subspace topology (or the relative topology, or the induced topology, or the trace topology).; see Section 26.2.4. Submanifolds, p. 59


Definition

Given a topological space (X, \tau) and a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
S of X, the subspace topology on S is defined by :\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace. That is, a subset of S is open in the subspace topology
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it is the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of S with an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated. Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map :\iota: S \hookrightarrow X is continuous. More generally, suppose \iota is an injection from a set S to a topological space X. Then the subspace topology on S is defined as the coarsest topology for which \iota is continuous. The open sets in this topology are precisely the ones of the form \iota^(U) for U open in X. S is then
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to its image in X (also with the subspace topology) and \iota is called a topological embedding. A subspace S is called an open subspace if the injection \iota is an
open map In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function f : X \to Y is open if for any open set U in X, the image f(U) is open in Y. Likewise, ...
, i.e., if the forward image of an open set of S is open in X. Likewise it is called a closed subspace if the injection \iota is a
closed map In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function f : X \to Y is open if for any open set U in X, the image f(U) is open in Y. Likewise, ...
.


Terminology

The distinction between a set and a topological space is often blurred notationally, for convenience, which can be a source of confusion when one first encounters these definitions. Thus, whenever S is a subset of X, and (X, \tau) is a topological space, then the unadorned symbols "S" and "X" can often be used to refer both to S and X considered as two subsets of X, and also to (S,\tau_S) and (X,\tau) as the topological spaces, related as discussed above. So phrases such as "S an open subspace of X" are used to mean that (S,\tau_S) is an open subspace of (X,\tau), in the sense used above; that is: (i) S \in \tau; and (ii) S is considered to be endowed with the subspace topology.


Examples

In the following, \mathbb represents the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s with their usual topology. * The subspace topology of the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, as a subspace of \mathbb, is the
discrete topology In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
. * The
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s \mathbb considered as a subspace of \mathbb do not have the discrete topology ( for example is not an open set in \mathbb because there is no open subset of \mathbb whose intersection with \mathbb can result in ''only'' the singleton ). If ''a'' and ''b'' are rational, then the intervals (''a'', ''b'') and 'a'', ''b''are respectively open and closed, but if ''a'' and ''b'' are irrational, then the set of all rational ''x'' with ''a'' < ''x'' < ''b'' is both open and closed. * The set ,1as a subspace of \mathbb is both open and closed, whereas as a subset of \mathbb it is only closed. * As a subspace of \mathbb,
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
, 3is composed of two disjoint ''open'' subsets (which happen also to be closed), and is therefore a disconnected space. * Let ''S'' = if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the composite map i\circ f is continuous. This property is characteristic in the sense that it can be used to define the subspace topology on Y. We list some further properties of the subspace topology. In the following let S be a subspace of X. * If f:X\to Y is continuous then the restriction to S is continuous. * If f:X\to Y is continuous then f:X\to f(X) is continuous. * The closed sets in S are precisely the intersections of S with closed sets in X. * If A is a subspace of S then A is also a subspace of X with the same topology. In other words, the subspace topology that A inherits from S is the same as the one it inherits from X. * Suppose S is an open subspace of X (so S\in\tau). Then a subset of S is open in S if and only if it is open in X. * Suppose S is a closed subspace of X (so X\setminus S\in\tau). Then a subset of S is closed in S if and only if it is closed in X. * If B is a basis for X then B_S = \ is a basis for S. * The topology induced on a subset of a basis (topology)">basis for X then B_S = \ is a basis for S. * The topology induced on a subset of a metric space by restricting the metric (mathematics)">metric to this subset coincides with subspace topology for this subset.


Preservation of topological properties

If a topological space having some topological property implies its subspaces have that property, then we say the property is hereditary. If only closed subspaces must share the property we call it weakly hereditary. * Every open and every closed subspace of a completely metrizable space is completely metrizable. * Every open subspace of a Baire space is a Baire space. * Every closed subspace of a
compact space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., i ...
is compact. * Being a
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
is hereditary. * Being a
normal space Normal(s) or The Normal(s) may refer to: Film and television * Normal (2003 film), ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * Normal (2007 film), ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keit ...
is weakly hereditary. *
Total boundedness In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “si ...
is hereditary. * Being totally disconnected is hereditary. * First countability and second countability are hereditary.


See also

* the dual notion quotient space *
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
* direct sum topology


Notes


References

* Bourbaki, Nicolas, ''Elements of Mathematics: General Topology'', Addison-Wesley (1966) * * Willard, Stephen. ''General Topology'', Dover Publications (2004) {{ISBN, 0-486-43479-6 Topology General topology