In
probability theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
, a subordinator is a
stochastic process that is
non-negative
In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
and whose increments are
stationary and
independent
Independent or Independents may refer to:
Arts, entertainment, and media Artist groups
* Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s
* Independe ...
.
Subordinators are a special class of
Lévy process
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which dis ...
that play an important role in the theory of
local time
Local time is the time observed in a specific locality. There is no canonical definition. Originally it was mean solar time, but since the introduction of time zones it is generally the time as determined by the time zone in effect, with dayligh ...
.
In this context, subordinators describe the evolution of time within another stochastic process, the subordinated stochastic process. In other words, a subordinator will determine the
random
In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual rando ...
number of "time steps" that occur within the subordinated process for a given unit of chronological time.
In order to be a subordinator a process must be a
Lévy process
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which dis ...
It also must be increasing,
almost surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0 ...
,
[ or an ]additive process An additive process, in probability theory, is a cadlag, continuous in probability stochastic process with independent increments.
An additive process is the generalization of a Lévy process (a Lévy process is an additive process with identical ...
.
Definition
A subordinator is a real-valued stochastic process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appe ...
that is a non-negative
In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
and a Lévy process
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which dis ...
.
Subordinators are the stochastic processes that have all of the following properties:
* almost surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0 ...
* is non-negative, meaning for all
* has stationary increments In probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have sta ...
, meaning that for and , the distribution of the random variable depends only on and not on
* has independent increments In probability theory, independent increments are a property of stochastic processes and random measures. Most of the time, a process or random measure has independent increments by definition, which underlines their importance. Some of the stochas ...
, meaning that for all and all , the random variables defined by are independent
Independent or Independents may refer to:
Arts, entertainment, and media Artist groups
* Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s
* Independe ...
of each other
* The paths of are càdlàg In mathematics, a càdlàg (French: "''continue à droite, limite à gauche''"), RCLL ("right continuous with left limits"), or corlol ("continuous on (the) right, limit on (the) left") function is a function defined on the real numbers (or a subse ...
, meaning they are continuous from the right everywhere and the limits from the left exist everywhere
Examples
The variance gamma process
In the theory of stochastic processes, a part of the mathematical theory of probability, the variance gamma process (VG), also known as Laplace motion, is a Lévy process determined by a random time change. The process has finite moments distingu ...
can be described as a Brownian motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas).
This pattern of motion typically consists of random fluctuations in a particle's position insi ...
subject to a gamma subordinator.[ If a ]Brownian motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas).
This pattern of motion typically consists of random fluctuations in a particle's position insi ...
, , with drift is subjected to a random time change which follows a gamma process, , the variance gamma process will follow:
:
The Cauchy process In probability theory, a Cauchy process is a type of stochastic process. There are symmetric and asymmetric forms of the Cauchy process. The unspecified term "Cauchy process" is often used to refer to the symmetric Cauchy process.
The Cauchy p ...
can be described as a Brownian motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas).
This pattern of motion typically consists of random fluctuations in a particle's position insi ...
subject to a Lévy subordinator.[
]
Representation
Every subordinator can be written as
:
where
* is a scalar and
* is a Poisson process
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
on with intensity measure In probability theory, an intensity measure is a measure that is derived from a random measure. The intensity measure is a non-random measure and is defined as the expectation value of the random measure of a set, hence it corresponds to the averag ...
. Here is a measure on with , and is the Lebesgue measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides ...
.
The measure is called the Lévy measure
Levy, Lévy or Levies may refer to:
People
* Levy (surname), people with the surname Levy or Lévy
* Levy Adcock (born 1988), American football player
* Levy Barent Cohen (1747–1808), Dutch-born British financier and community worker
* Levy Fi ...
of the subordinator, and the pair is called the characteristics of the subordinator.
Conversely, any scalar and measure on with define a subordinator with characteristics by the above relation.
References
[{{cite book , last1=Kallenberg , first1=Olav , author-link1=Olav Kallenberg , year=2017 , title=Random Measures, Theory and Applications, location= Switzerland , publisher=Springer , doi= 10.1007/978-3-319-41598-7, isbn=978-3-319-41596-3, pages=651]
Stochastic processes