A subcritical reactor is a
nuclear fission
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
reactor concept that produces fission without achieving
criticality. Instead of sustaining a
chain reaction
A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events.
Chain reactions are one way that sys ...
, a subcritical reactor uses additional
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s from an outside source. There are two general classes of such devices. One uses neutrons provided by a
nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
machine, a concept known as a
fusion–fission hybrid. The other uses neutrons created through
spallation of heavy nuclei by charged particles such as protons accelerated by a
particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
, a concept known as an accelerator-driven system (ADS) or
accelerator-driven sub-critical reactor.
Motivation
A subcritical reactor can be used to destroy heavy isotopes contained in the used fuel from a conventional nuclear reactor, while at the same time producing electricity. The long-lived
transuranic elements
The transuranium (or transuranic) elements are the chemical elements with atomic number greater than 92, which is the atomic number of uranium. All of them are radioactively unstable and decay into other elements. Except for neptunium and pluton ...
in
nuclear waste
Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
can in principle be
fissioned, releasing
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
in the process and leaving behind the
fission products which are shorter-lived. This would shorten considerably the time for disposal of
radioactive waste
Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
. However, some isotopes have threshold fission
cross sections and therefore require a
fast reactor
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow t ...
for being fissioned. While they can be transmuted into fissile material with thermal neutrons, some nuclides need as many as three successive neutron capture reactions to reach a fissile isotope and then yet another neutron to fission. Also, they release on average too few new neutrons per fission, so that with a fuel containing a high fraction of them, criticality cannot be reached. The accelerator-driven reactor is independent of this parameter and thus can utilize these nuclides. The three most important long-term radioactive isotopes that could advantageously be handled that way are
neptunium-237
Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be ...
,
americium-241
Americium-241 (Am, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . Am is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It ...
and
americium-243. The
nuclear weapon
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
material
plutonium-239
Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
is also suitable although it can be expended in a cheaper way as
MOX fuel
Mixed oxide fuel (MOX fuel) is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enr ...
or inside existing
fast reactor
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow t ...
s.
Besides nuclear waste incineration, there is interest in this type reactor because it is perceived as
inherently safe, unlike a conventional reactor. In most types of critical reactors, there exist circumstances in which the rate of fission can increase rapidly, damaging or destroying the reactor and allowing the escape of radioactive material (see
SL-1
Stationary Low-Power Reactor Number One, also known as SL-1, initially the Argonne Low Power Reactor (ALPR), was a United States Army experimental nuclear reactor in the Western United States, western United States at the Idaho National Laborato ...
or
Chernobyl disaster
On 26 April 1986, the no. 4 reactor of the Chernobyl Nuclear Power Plant, located near Pripyat, Ukrainian Soviet Socialist Republic, Ukrainian SSR, Soviet Union (now Ukraine), exploded. With dozens of direct casualties, it is one of only ...
). With a subcritical reactor, the reaction will cease unless continually fed neutrons from an outside source. However, the problem of heat generation even after ending the chain reaction remains, so that continuous cooling of such a reactor for a considerable period after shut-down remains vital in order to avoid overheating. However, even the issue of
decay heat
Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha particle, alpha, Beta particle, beta or gamma radiation is converted into the thermal movement ...
can be minimized as a subcritical reactor needn't assemble a
critical mass
In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
of fissile material and can thus be built (nearly) arbitrarily small and thus reduce the required
thermal mass
In building design, thermal mass is a property of the matter of a building that requires a flow of heat in order for it to change temperature.
Not all writers agree on what physical property of matter "thermal mass" describes. Most writers use ...
of an emergency coolant system capable of absorbing all heat generated in the hours to days after a
scram
A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
.
Delayed neutrons
Another issue in which a subcritical reactor is different from a "normal" nuclear reactor (no matter whether it operates with fast or thermal neutrons) is that ''all'' "normal" nuclear power plants rely on
delayed neutrons to maintain safe operating conditions. Depending on the fissioning nuclide, a bit under 1% of neutrons aren't released immediately upon fission (
prompt neutrons) but rather with fractions of seconds to minutes of delay by
fission products which beta decay followed by neutron emission. Those delayed neutrons are essential for reactor control as the time between fission "generations" is on such a short order of magnitude that macroscopic physical processes or human intervention cannot keep a power excursion under control. However, as only the delayed neutrons provide enough neutrons to maintain criticality, the reaction times become several orders of magnitude larger and reactor control becomes feasible. By contrast this means that too low a fraction of delayed neutrons makes an otherwise fissile material unsuitable for operating a "conventional" nuclear power plant. Conversely, a subcritical reactor actually has slightly ''improved'' properties with a fuel with low delayed neutron fractions. (See below). It just so happens that while the currently most used fissile material has a relatively high delayed neutron fraction, has a much lower one, which - in addition to other physical and chemical properties - limits the possible plutonium content in "normal" reactor fuel. For this reason spent
MOX-fuel
Mixed oxide fuel (MOX fuel) is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enric ...
, which still contains significant amounts of plutonium (including fissile and - when "fresh" - ) is usually not
reprocessed due to the ingrowth of non-fissile which would require a higher plutonium content in fuel manufactured from this plutonium to maintain criticality. The other main component of spent fuel -
reprocessed uranium - is usually only recovered as a byproduct and fetches worse prices on the
uranium market
The uranium market, like all commodity markets, has a history of volatility, moving with the standard forces of supply and demand as well as geopolitical pressures. It has also evolved particularities of its own in response to the unique nature ...
than natural uranium due to ingrowth of and other "undesirable"
isotopes of uranium
Uranium (U) is a naturally occurring radioactive element (radioelement) with no stable isotopes. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in Earth's crust. The d ...
.
Principle
Most current ADS designs propose a high-intensity
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
accelerator with an energy of about 1
GeV, directed towards a
spallation target or spallation neutron source. The source located in the heart of the reactor core contains liquid metal which is impacted by the beam, thus releasing neutrons and is cooled by circulating the liquid metal such as
lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
-
bismuth
Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
towards a heat exchanger. The
nuclear reactor core surrounding the spallation
neutron source
A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
contains the fuel rods, the fuel being any fissile or fertile actinide mix, but preferable already with a certain amount of fissile material to not have to run at zero criticality during startup. Thereby, for each proton intersecting the spallation target, an average of 20
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s is released which
fission the surrounding fissile part of the fuel and transmute atoms in the fertile part, "breeding" new fissile material. If the value of 20 neutrons per GeV expended is assumed, one neutron "costs" 50 MeV while fission (which requires one neutron) releases on the order of 200 MeV per actinide atom that is split. Efficiency can be increased by reducing the energy needed to produce a neutron, increasing the share of usable energy extracted from the fission (if a thermal process is used
Carnot efficiency dictates that higher temperatures are needed to increase efficiency) and finally by getting criticality ever closer to 1 while still staying below it. An important factor in both efficiency and safety is ''how'' subcritical the reactor is. To simplify, the value of k(effective) that is used to give the criticality of a reactor (including delayed neutrons) can be interpreted as how many neutrons of each "generation" fission further nuclei. If k(effective) is 1, for every 1000 neutrons introduced, 1000 neutrons are produced that also fission further nuclei. Obviously the reaction rate would steadily increase in that case due to more and more neutrons being delivered from the neutron source. If k(effective) is ''just below'' 1, few neutrons have to be delivered from outside the reactor to keep the reaction at a steady state, increasing efficiency. On the other hand, in the extreme case of "zero criticality", that is k(effective)=0 (e.g. If the reactor is run for transmutation alone) ''all'' neutrons are "consumed" and none are produced inside the fuel. However, as
neutronics can only ever be known to a certain degree of precision, the reactor must in practice allow a safety margin below criticality that depends on how well the neutronics are known and on the effect of the ingrowth of nuclides that decay via neutron emitting
spontaneous fission
Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic proc ...
such as
Californium-252 or of nuclides that decay via
neutron emission
Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a Atomic nucleus, nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photodisin ...
.
The neutron balance can be regulated or indeed shut off by adjusting the accelerator power so that the reactor would be below
criticality. The additional neutrons provided by the spallation
neutron source
A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
provide the degree of control as do the
delayed neutrons in a conventional
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
, the difference being that spallation neutron source-driven neutrons are easily controlled by the accelerator. The main advantage is
inherent safety. A conventional
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
's
nuclear fuel
Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy.
Oxide fuel
For fission reactors, the fuel (typically based on uranium) is ...
possesses self-regulating properties such as the Doppler effect or void effect, which make these
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s safe. In addition to these physical properties of conventional reactors, in the subcritical reactor, whenever the neutron source is turned off, the fission reaction ceases and only the decay heat remains.
Technical challenges
There are technical difficulties to overcome before ADS can become economical and eventually be integrated into future nuclear waste management. The accelerator must provide a high intensity and also be highly reliable - each outage of the accelerator in addition to causing a
scram
A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
will put the system under immense
thermal stress
In mechanics and thermodynamics, thermal stress is mechanical stress created by any change in temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, m ...
. There are concerns about the window separating the protons from the spallation target, which is expected to be exposed to stress under extreme conditions. However, recent experience with the MEGAPIE liquid metal neutron spallation source tested at the
Paul Scherrer Institute
The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the Ri ...
has demonstrated a working beam window under a 0.78 MW intense proton beam. The chemical separation of the transuranic elements and the fuel manufacturing, as well as the structure materials, are important issues. Finally, the lack of
nuclear data at high neutron energies limits the efficiency of the design. This latter issue can be overcome by introducing a
neutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely ...
between the neutron source and the fuel, but this can lead to increased leakage as the moderator will also scatter neutrons ''away'' from the fuel. Changing the geometry of the reactor can reduce but never eliminate leakage. Leaking neutrons are also of concern due to the
activation products they produce and due to the physical damage to materials neutron irradiation can cause. Furthermore, there are certain advantages to the fast neutron spectrum which cannot be achieved with
thermal neutron
The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wit ...
s as are the result of a moderator. On the other hand, thermal neutron reactors are the most common and well understood type of nuclear reactor and thermal neutrons also have advantages over fast neutrons.
Some laboratory experiments and many theoretical studies have demonstrated the theoretical possibility of such a plant.
Carlo Rubbia, a nuclear
physicist
A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
, Nobel laureate, and former director of
CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
, was one of the first to conceive a design of a subcritical reactor, the so-called "
energy amplifier". In 2005, several large-scale projects are going on in Europe and Japan to further develop subcritical reactor technology. In 2012 CERN scientists and engineers launched the
International Thorium Energy Committee (iThEC), an organization dedicated to pursuing this goal and which organized the ThEC13 conference on the subject.
Economics and public acceptance
Subcritical reactors have been proposed both as a means of generating
electric power
Electric power is the rate of transfer of electrical energy within a electric circuit, circuit. Its SI unit is the watt, the general unit of power (physics), power, defined as one joule per second. Standard prefixes apply to watts as with oth ...
and as a means of
transmutation of
nuclear waste
Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
, so the gain is twofold. However, the costs for construction, safety and maintenance of such complex installations are expected to be very high, not to mention the amount of research needed to develop a practical design (see above). There exist cheaper and reasonably safe waste management concepts, such as the transmutation in
fast-neutron reactor
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow t ...
s. However, the solution of a subcritical reactor might be favoured for a better
public acceptance – it is considered more acceptable to burn the waste than to bury it for hundreds of thousands of years. For future waste management, a few transmutation devices could be integrated into a large-scale nuclear program, hopefully increasing only slightly the overall costs.
The main challenge facing partitioning and transmutation operations is the need to enter nuclear cycles of extremely long duration: about 200 years. Another disadvantage is the generation of high quantities of intermediate-level long-lived
radioactive waste
Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
(ILW) which will also require deep geological disposal to be safely managed. A more positive aspect is the expected reduction in size of the repository, which was estimated to be an order of 4 to 6. Both positive and negative aspects were examined in an international benchmark study coordinated by
Forschungszentrum Jülich and financed by the
European Union
The European Union (EU) is a supranational union, supranational political union, political and economic union of Member state of the European Union, member states that are Geography of the European Union, located primarily in Europe. The u ...
.
Subcritical hybrid systems
While ADS was originally conceptualized as a part of a
light water reactor
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
design, other proposals have been made that incorporate an ADS into other
generation IV reactor
Generation IV (Gen IV) reactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of ...
concepts.
One such proposal calls for a
gas-cooled fast reactor that is fueled primarily by
plutonium
Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
and
americium
Americium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element e ...
. The neutronic properties of americium make it difficult to use in any critical reactor, because it tends to make the
moderator temperature coefficient more positive, decreasing stability. The inherent safety of an ADS, however, would allow americium to be safely burned. These materials also have good neutron economy, allowing the pitch-to-diameter ratio to be large, which allows for improved natural circulation and economics.
Muon-driven systems for nuclear waste disposal
Subcritical methods for use in
nuclear waste
Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
disposal that do not rely on neutron sources are also being developed. These include systems that rely on the mechanism of
muon capture, in which
muon
A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of ''ħ'', but with a much greater mass. It is classified as a ...
s (μ
−) produced by a compact accelerator-driven source
transmute long-lived radioactive isotopes to stable isotopes.
Natural
Generally the term "subcritical reactor" is reserved for artificial systems, but natural systems do exist—any natural source of fissile material exposed to cosmic and gamma rays (fro
even the sun could be considered a subcritical reactor. This includes space launched satellites with
radioisotope thermoelectric generator
A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
s as well as any such exposed reservoirs.
See also
*
Alternative energy
Renewable energy (also called green energy) is energy made from renewable resource, renewable natural resources that are replenished on a human lifetime, human timescale. The most widely used renewable energy types are solar energy, wind pow ...
*
Cosmic ray spallation
*
Spallation Neutron Source
*
ISIS neutron source
*
Hybrid nuclear fusion
References
;Notes
;Sources
World Nuclear Association Fact SheetMYRRHA (Belgium)GEM STAR Reactor, ADNA Corporation *Multiple authors. "A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source", Nuclear Technology, Vol. 150, No. 2, May 2005, pages 162–188. URL: http://www.ans.org/pubs/journals/nt/va-150-2-162-188
Aker Solutions Accelerator Driven Thorium Reactor power station
IAEA
The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was established in 1957 ...
)
{{DEFAULTSORT:Subcritical Reactor
Nuclear reactors
Particle physics