In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a strong topology is a
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
which is stronger than some other "default" topology. This term is used to describe different topologies depending on context, and it may refer to:
* the
final topology
In general topology and related areas of mathematics, the final topology (or coinduced, weak, colimit, or inductive topology) on a Set (mathematics), set X, with respect to a family of functions from Topological space, topological spaces into X, is ...
on the
disjoint union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
* the topology arising from a
norm
Norm, the Norm or NORM may refer to:
In academic disciplines
* Normativity, phenomenon of designating things as good or bad
* Norm (geology), an estimate of the idealised mineral content of a rock
* Norm (philosophy), a standard in normative e ...
* the
strong operator topology
In functional analysis, a branch of mathematics, the strong operator topology, often abbreviated SOT, is the locally convex topology on the set of bounded operators on a Hilbert space ''H'' induced by the seminorms of the form T\mapsto\, Tx\, , as ...
* the
strong topology (polar topology)
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded sub ...
, which subsumes all topologies above.
A topology τ is stronger than a topology σ (is a
finer topology
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies.
Definition
A topology on a set may be defined as the ...
) if τ contains all the open sets of σ.
In
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, it usually means the topology of an
algebraic variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
as
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
or subspace of
complex projective space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
, as opposed to the
Zariski topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
(which is rarely even a
Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
).
See also
*
Weak topology
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a ...
{{sia, mathematics
Topology