HOME

TheInfoList



OR:

Stretchable microelectrode arrays (stretchable MEAs or sMEAs) (also referred to as stretchable multielectrode arrays) are a specialized type of microelectrode array (MEA) with a key advantage; they can be deformed, stretched, bent, and twisted while maintaining electrical functionality whereas standard MEAs break upon mechanical loading. Flexible MEAs (flexMEA), which are often confounded with stretchable MEAs, lie in between stretchable MEAs and standard MEA in terms of their
mechanical properties A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one mate ...
because they bend and twist to some degree, but not stretch. Just like traditional MEAs, stretchable MEAs consist of a few thousand microelectrodes that allow recording or stimulation of electrical signals from cells (neurons, muscles, etc.), and are used
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
in a living being or
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
with cell cultures.


Theory

A stretchable conductor typically consists of two components: an
elastomeric An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of ''elas ...
insulator and an
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
. There are several approaches to producing stretchable and electrical conducting materials that fall into two categories:
structural design Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and joints' that create the form and shape of human-made structures. Structural engineers also must understand and c ...
and material innovation.


Material innovation

* Electronic Fillers: This is the oldest approach to making an
elastomeric An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of ''elas ...
material elastically stretchable. In principle, rigid and
electrically conductive Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
materials and mixed with an elastomeric
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
before curing to create stretchable composites. If the concentration of the electrically conductive filler is high enough they form a mesh-like
percolation In physics, chemistry, and materials science, percolation () refers to the movement and filtration, filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connecti ...
network that facilitates the free movement of charge carriers (ions, electrons) through contact junctions. The minimum concentration of the electronic filler material that is required to create conductive pathways for
charge carrier In solid state physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. ...
transport through the elastomer is called the
percolation threshold The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in Randomness, random systems. Below the threshold a giant connected component (graph theory), connected componen ...
. The
percolation threshold The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in Randomness, random systems. Below the threshold a giant connected component (graph theory), connected componen ...
is usually indicated as weight percentage (wt%) or volume percentage (vol%) of the filler material, and ranges from less than 1wt% for high aspect ration carbon nanotubes to over 15wt%. The type of filler materials ranges from metals in powder or
nanowire file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
form,
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
as
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
or nanotubes, to electrically conducting polymers. * ‘Wavy’
Nanowires upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 m). Mor ...
and Nanoribbons: The spontaneous formation of wavy patterns of aligned buckles that is caused by the deposition of a thin gold film on the surface of the
elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of ''ela ...
polydimethylsiloxane Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, is a silicone polymer with a wide variety of uses, from cosmetics to industrial lubrication and passive daytime radiative cooling. PDMS is particularly known for its ...
(PDMS) was first described by the group of George Whitesides at Harvard University in 2000. The gold was deposited on warmed PDMS (100 °C), and, upon cooling and the associated thermal shrinkage of the elastomer, the gold film comes under compressive stress which is relieved by creating buckles. In subsequent years, the group of John Rogers at the University of Urbana Champaign (now at Northwestern University) has developed the technology to bond very thin silicon ribbons to a pre-stretched PDMS membrane. Upon relaxation of the per-stretch, the compressive
mechanical stress In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongatio ...
in the
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
ribbons is relieved by creating wavy buckles in the PDMS. As silicon is a brittle material, the ribbons need to very thin (about 100 nm) to stay intact during buckling. * Liquid Metals: A
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
or
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
that is liquid at room temperature can be enclosed in PDMS and used as a stretchable
conductor Conductor or conduction may refer to: Biology and medicine * Bone conduction, the conduction of sound to the inner ear * Conduction aphasia, a language disorder Mathematics * Conductor (ring theory) * Conductor of an abelian variety * Cond ...
. Mercury is the only pure metal that is liquid at room temperature but has limited application due to its
neurotoxicity Neurotoxicity is a form of toxicity in which a biological, chemical, or physical agent produces an adverse effect on the structure or function of the central and/or peripheral nervous system. It occurs when exposure to a substance – specifical ...
. Cesium melts at 28.5 °C, but reacts violently when exposed to air and is therefore not suitable for this application. Most researchers therefore use an eutectic mixture of Indium and Gallium, so called EGaIn, which has a melting point is 15.7 °C and consists of 75.5% Gallium and 24.5% Indium. A eutectic mixture of Ga (68.5%), In (21.5%) and Sn (10.0%), also known as
Galinstan Galinstan is a brand name for an alloy composed of gallium, indium, and tin which melts at and is thus liquid at room temperature. In scientific literature, galinstan is also used to denote the eutectic alloy of gallium, indium, and tin, which ...
, is another popular choice and has a melting point of 10.5 °C. * Microcracked gold thin film: When a thin gold film is deposited on PDMS under certain conditions, the gold film adopts a microcracked morphology which makes the gold stretchable. The maximum strain of the film decreases with the length and increases with the width of the conductor.


Structural design

* Geometric patterning,
fractal In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
patterns: Metal traces are deposited in specific patterns, such as meandering or serpentine shapes, within a stretchable elastomeric substrate to accommodate strain. The resulting structure is akin to a 2-dimensional spring. The University of Ghent and IMEC in Belgium have pioneered the approach to using Meander shaped metallic structures. ** The group of John Rogers increased the maximum strain in devices created by this approach using fractal-based structures. These fractal patterns are characterized by self-similarity, i.e., a small sections of the structure yields pieces with geometries that resemble the whole structure. **These fractal patterns include (i) Koch, Peano, Hilbert lines, (ii) Moore, Vicsek loops, and (iii) Greek crosses. * Origami-inspired structures, and
kirigami is a variation of origami, the Japanese art of folding paper. In , the paper is cut as well as being folded, resulting in a three-dimensional design that stands away from the page. typically does not use glue. Overview In the United States, t ...
cuts: Intrinsically rigid or inelastic flexible materials can be turned into stretchable materials by applying
origami ) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a ...
technology and kirigami cuts.


History

The first time the term stretchable multielectrode array (sMEA) Understanding how cells convert mechanical stimuli appeared in the literature was in a conference proceeding in 2002 from the Lawrence Livermore National Laboratory. This paper described the fabrication of an sMEA for a retinal
prosthesis In medicine, a prosthesis (: prostheses; from ), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through physical trauma, disease, or a condition present at birth (Congenital, congenital disord ...
, but no biological material was used, i.e., functionality to record or stimulate
neural activity Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron) ...
was not attempted. The first description of sMEAs being used to record
neural activity Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron) ...
in biological samples was in 2006 when the research group of Barclay Morrison at Columbia University and Sigurd Wagner at Princeton University reported recording of spontaneous activity in organotypic
hippocampal The hippocampus (: hippocampi; via Latin from Greek , 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the subiculum ar ...
tissue slices. Neither the electrodes nor the tissue appears to have been stretched in these experiments. In 2008, a paper from the
Georgia Institute of Technology The Georgia Institute of Technology (commonly referred to as Georgia Tech, GT, and simply Tech or the Institute) is a public university, public research university and Institute of technology (United States), institute of technology in Atlanta, ...
and
Emory University Emory University is a private university, private research university in Atlanta, Georgia, United States. It was founded in 1836 as Emory College by the Methodist Episcopal Church and named in honor of Methodist bishop John Emory. Its main campu ...
described the use of sMEAs in stimulating a
explant In biology, explant culture is a technique to organotypically culture cells from a piece or pieces of tissue or organ removed from a plant or animal. The term ''explant'' can be applied to samples obtained from any part of the organism. The extract ...
of a rat
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal c ...
. The sMEA was wrapped around the spinal cord, but not stretched, and the cells were electrically stimulated but not used in recording electrophysiological activity. In 2009, another paper of the Morrison/Wagner groups described for the first time the use of an sMEA with a biological sample being stretched as well as
electrical stimulation Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES ca ...
and recording of
electrophysiological Electrophysiology (from ee the Electron#Etymology, etymology of "electron" ; and ) is the branch of physiology that studies the electrical properties of biological cell (biology), cells and tissues. It involves measurements of voltage change ...
activity being carried out before and after stretching. In subsequent years, the number of research papers that describes different approaches to fabricating sMEAs and their use for
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
and
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
research has increased immensely.


Types and capabilities

Stretchable microelectrode arrays (sMEAs) can be categorized whether they are used with
cells Cell most often refers to: * Cell (biology), the functional basic unit of life * Cellphone, a phone connected to a cellular network * Clandestine cell, a penetration-resistant form of a secret or outlawed organization * Electrochemical cell, a d ...
or tissue slices in a dish (in vitro) or whether they are implanted in an animal or human (in vivo).


In vitro stretchable MEAs

sMEAs are used in vitro to record and stimulate electrophysiological activity in dissociated cells, tissue slices or organoids. In vitro use of sMEAs may include stretching of the cells. The cells are either harvested from an animal or were derived from human
induced pluripotent stem cells Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, J ...
(hiPSCs). The form factor of sMEAs is often similar to rigid MEAs because the same data acquisition systems can be used for both types of MEAs. The main differences between sMEAs and rigid MEAs are summarized below: * Number of microelectrodes:sMEAs usually have 60 or less microelectrodes whereas rigid MEAs have 60 electrodes in the standard configuration but can have several thousand electrodes in CMOS devices. * Diameter of the recording sites: The recording site diameter is typically 50-100μm for sMEAs and 10-30 μm for glass MEAs, but can be less than 10μm in CMOS MEAs. * Spacing between microelectrodes: The spacing between microelectrodes (center-to-center) is typically larger than 300μm for sMEAs and 200 μm for glass MEAs. but can be less than 20μm in CMOS MEAs. The reason for these differences is that sMEAs are fabricated using soft elastomeric materials such as
PDMS PDMS may refer to: * Palm Desert Middle School, a middle school in Palm Desert, California * Plant Design Management System * Plasma desorption mass spectrometry * Point-Defence Missile System * Polydimethylsiloxane, a silicon-based organic polymer ...
as substrate and encapsulation which have a much higher coefficient of thermal expansion and lower Young's Modulus than rigid MEAs that are built on glass, plastic or silicon (CMOS) substrates. These properties make it more challenging to align and bond small features. In addition, the maximum strain that the electrodes can tolerate decreases for narrower electrodes, which is why the electrodes leads are often wide, thus limiting the number electrodes. sMEAs for in vitro applications are only available commercially from BioMedical Sustainable Elastic Electronic Devices.


Advantages

There are several benefits of using soft and stretchable MEAs instead of traditional rigid or merely flexible MEAs. With traditional MEAs, the cells are grown on a rigid
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (aquatic environment), the earthy material that exi ...
material such as
glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
or
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
. This environment is very different from the natural environment of the cells in the body, which causes the cells to behave differently
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
than in their natural environment
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
. This is a major issue for the use of rigid MEAs for pre-clinical research because the goal of pre-clinical research is to predict treatment outcomes in humans. The advantages of using sMEAs for pre-clinical research are twofold. First, the stiffness of the substrate that the cells are grown on matches more closely the stiffness of the cellular environment in the body. Second, sMEAs enable the application of biomechanical cues to the cells, which affect cellular function and behavior. Both of these advantages reduce the mismatch of the environment of cells in vitro and in human body, i.e., the cells behave more similarly in vitro as they do in vivo, which improves the value of pre-clinical research to predict clinical outcomes, thus potentially reducing the failure rate of clinical trials (now >95%).


Disadvantage

The main disadvantage of sMEAs compared to rigid MEAs are related to the different technologies that are used to manufacture these devices. sMEAs have usually up to 60 electrodes with diameters of between 50μm and 100μm where rigid CMOS based MEAs can have thousands of electrodes with diameters of 10μm. This means that sMEAs are not suitable for studying sub-cellular structures.


In vivo stretchable MEAs

Stretchable MEAs have many benefits for implantable in vivo applications for recording and stimulation of electrophysiological activity from electrogenic biological tissues (most commonly neurons and muscles). Some applications involve only recording of electrophysiological activity, e.g., on the surface of the brain, the spinal cord, some involve only stimulation of electrophysiological activity, and some both.


Advantages

The main benefits of using sMEAs for
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
applications are twofold. First, they can
conform Conformity or conformism is the act of matching attitudes, beliefs, and behaviors to group norms, politics or being like-minded. Norms are implicit, specific rules, guidance shared by a group of individuals, that guide their interactions with oth ...
to the dynamic and often curved surfaces of biological tissues. Second, sMEAs cause significant smaller foreign body reaction than rigid MEAs because of the reduced mismatch in mechanical properties (
stiffness Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a ...
) between the
implant Implant can refer to: Medicine *Implant (medicine), or specifically: **Brain implant **Breast implant **Buttock augmentation, Buttock implant **Cochlear implant **Contraceptive implant **Dental implant **Fetal tissue implant **Implantable cardiov ...
the tissue.


Disadvantage

The main disadvantage of sMEAs for implanted applications is the mechanical
robustness Robustness is the property of being strong and healthy in constitution. When it is transposed into a system A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, ...
compared to rigid MEAs, which can cause the implant to break or tear.


Applications


Neural interfaces

In neural interfaces, sMEAs are utilized to record and stimulate
neural activity Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron) ...
. Their stretchability allows them to conform to the brain's surface or penetrate neural tissue without causing significant damage. This improves the quality of neural recordings and the effectiveness of neural stimulation, which is crucial for applications such as brain-machine interfaces.


Electrocorticography

Electrocorticography Electrocorticography (ECoG), a type of intracranial electroencephalography (iEEG), is a type of electrophysiological monitoring that uses electrodes placed directly on the exposed surface of the brain to record electrical activity from the cer ...
(EcoG) with stretchable MEAs offers a less invasive method for recording electrical activity from the brain's surface. These arrays can conform to the cortical surface, providing high-resolution, stable recordings even during brain movements. This capability is essential for applications such as
epilepsy Epilepsy is a group of Non-communicable disease, non-communicable Neurological disorder, neurological disorders characterized by a tendency for recurrent, unprovoked Seizure, seizures. A seizure is a sudden burst of abnormal electrical activit ...
monitoring and brain-computer interfaces.


Cardiac monitoring

sMEAs are employed in
cardiac The heart is a muscular organ found in humans and other animals. This organ pumps blood through the blood vessels. The heart and blood vessels together make the circulatory system. The pumped blood carries oxygen and nutrients to the tissu ...
monitoring and therapy. They can be wrapped around the heart to monitor electrical activity or deliver therapeutic electrical impulses. Their
flexibility Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a ...
ensures they remain in contact with the heart's surface despite its constant motion. This application is vital for detecting and treating arrhythmias and other cardiac conditions, providing real-time monitoring and precise intervention.


In vitro research

sMEAs are used in
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
research to study cellular responses under various mechanical conditions. They enable the monitoring and stimulation of cells in a controlled environment, providing insights into cellular behavior and disease mechanisms. This application is particularly useful in drug testing and the development of new therapies.


Soft robotics

In soft
robotics Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots. Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer s ...
, sMEAs create
sensors A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal. In the broadest definition, a sensor is a devi ...
and
actuators An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system (called an actuating system). The effect is usually produced in a controlled way. ...
that can deform in response to external forces. These applications utilize the mechanical resilience and electrical functionality of sMEAs to develop robots capable of navigating complex environments and performing delicate tasks. Soft robotic systems equipped with sMEAs can adapt to various tasks, from medical procedures to industrial
automation Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machine ...
.


Conclusion

Stretchable microelectrode arrays represent an advancement in biomedical engineering, with potential applications in neural interfaces, cardiac monitoring, in vitro research, and soft robotics. Research and development efforts continue to focus on overcoming existing challenges to fully realize the potential of these devices.


References

{{reflist Neurophysiology Electrophysiology