HOME

TheInfoList



OR:

In mathematics, stratified Morse theory is an analogue to Morse theory for general stratified spaces, originally developed by Mark Goresky and Robert MacPherson. The main point of the theory is to consider functions f : M \to \mathbb R and consider how the stratified space f^(-\infty,c] changes as the real number c \in \mathbb R changes. Morse theory of stratified spaces has uses everywhere from pure mathematics topics such as braid groups and Lawrence–Krammer representation, representations to robot motion planning and potential theory. A popular application in pure mathematics is Morse theory on manifolds with boundary, and manifolds with corners.


See also

*
Digital Morse theory In mathematics, digital Morse theory is a digital adaptation of continuum Morse theory for scalar volume data. This is not about the Samuel Morse's Morse code of long and short clicks or tones used in manual electric telegraphy. The term was fir ...
* Discrete Morse theory * Level-set method


References


DJVU file on Goresky's page
* * Generalized manifolds Morse theory Singularity theory Stratifications {{topology-stub