HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, Stone's representation theorem for Boolean algebras states that every
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a certain field of sets. The theorem is fundamental to the deeper understanding of
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
that emerged in the first half of the 20th century. The theorem was first proved by Marshall H. Stone. Stone was led to it by his study of the
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operator (mathematics), operators in a variety of mathematical ...
of operators on a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
.


Stone spaces

Each
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
''B'' has an associated
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, denoted here ''S''(''B''), called its Stone space. The points in ''S''(''B'') are the
ultrafilter In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
s on ''B'', or equivalently the
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s from ''B'' to the two-element Boolean algebra. The topology on ''S''(''B'') is generated by a basis consisting of all sets of the form \, where ''b'' is an element of ''B''. These sets are also closed and so are clopen (both closed and open). This is the topology of pointwise convergence of nets of homomorphisms into the two-element Boolean algebra. For every Boolean algebra ''B'', ''S''(''B'') is a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
totally disconnected
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
; such spaces are called Stone spaces (also ''profinite spaces''). Conversely, given any Stone space ''X'', the collection of subsets of ''X'' that are clopen is a Boolean algebra.


Representation theorem

A simple version of Stone's representation theorem states that every Boolean algebra ''B'' is isomorphic to the algebra of clopen subsets of its Stone space ''S''(''B''). The isomorphism sends an element b \in B to the set of all ultrafilters that contain ''b''. This is a clopen set because of the choice of topology on ''S''(''B'') and because ''B'' is a Boolean algebra. Restating the theorem using the language of
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
; the theorem states that there is a duality between the
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
of
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
s and the category of Stone spaces. This duality means that in addition to the correspondence between Boolean algebras and their Stone spaces, each
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
from a Boolean algebra ''A'' to a Boolean algebra ''B'' corresponds in a natural way to a continuous function from ''S''(''B'') to ''S''(''A''). In other words, there is a
contravariant functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
that gives an equivalence between the categories. This was an early example of a nontrivial duality of categories. The theorem is a special case of Stone duality, a more general framework for dualities between
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s and
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
s. The proof requires either the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
or a weakened form of it. Specifically, the theorem is equivalent to the
Boolean prime ideal theorem In mathematics, the Boolean prime ideal theorem states that Ideal (order theory), ideals in a Boolean algebra (structure), Boolean algebra can be extended to Ideal (order theory)#Prime ideals , prime ideals. A variation of this statement for Filte ...
, a weakened choice principle that states that every Boolean algebra has a prime ideal. An extension of the classical Stone duality to the category of Boolean spaces (that is, zero-dimensional locally compact Hausdorff spaces) and continuous maps (respectively, perfect maps) was obtained by G. D. Dimov (respectively, by H. P. Doctor).


See also

* * * * * * * *


Citations


References

* * *{{cite book , last1=Burris , first1=Stanley N. , first2=H.P. , last2=Sankappanavar , title=A Course in Universal Algebra , publisher=Springer , date=1981 , isbn=3-540-90578-2 , url=http://www.thoralf.uwaterloo.ca/htdocs/ualg.html General topology Boolean algebra Theorems in lattice theory Categorical logic