Stokes's Law Of Sound Attenuation
   HOME

TheInfoList



OR:

In
acoustics Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician ...
, Stokes's law of sound attenuation is a formula for the
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a Transmission medium, medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and ...
of
sound In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the br ...
in a
Newtonian fluid A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of cha ...
, such as water or air, due to the fluid's
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
. It states that the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
of a
plane wave In physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of ...
decreases exponentially with distance traveled, at a rate given by \alpha = \frac where is the dynamic viscosity coefficient of the fluid, is the sound's
angular frequency In physics, angular frequency (symbol ''ω''), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine ...
, is the fluid
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, and is the
speed of sound The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elasticity (solid mechanics), elastic medium. More simply, the speed of sound is how fast vibrations travel. At , the speed of sound in a ...
in the medium.Stokes, G.G.
On the theories of the internal friction in fluids in motion, and of the equilibrium and motion of elastic solids
, ''Transactions of the Cambridge Philosophical Society'', vol.8, 22, pp. 287-342 (1845)
The law and its derivation were published in 1845 by the Anglo-Irish physicist
G. G. Stokes Sir George Gabriel Stokes, 1st Baronet, (; 13 August 1819 – 1 February 1903) was an Irish mathematician and physicist. Born in County Sligo, Ireland, Stokes spent his entire career at the University of Cambridge, where he served as the Lucasi ...
, who also developed Stokes's law for the
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
force in fluid motion. A generalisation of Stokes attenuation taking into account the effect of
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
was proposed by the German physicist
Gustav Kirchhoff Gustav Robert Kirchhoff (; 12 March 1824 – 17 October 1887) was a German chemist, mathematician, physicist, and spectroscopist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body ...
in 1868.G. Kirchhoff, "Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung", Ann. Phys., 210: 177-193 (1868)
Link to paper
/ref>S. Benjelloun and J. M. Ghidaglia, "On the dispersion relation for compressible Navier-Stokes Equations,
Link to Archiv e-printLink to Hal e-print
/ref> Sound attenuation in fluids is also accompanied by acoustic dispersion, meaning that the different frequencies are propagating at different sound speeds.


Interpretation

Stokes's law of sound attenuation applies to sound propagation in an
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
and
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
Newtonian medium. Consider a plane
sinusoidal A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is '' simple harmonic motion''; as rotation, it correspond ...
pressure wave that has amplitude at some point. After traveling a distance from that point, its amplitude will be A(d) = A_0e^ The parameter is a kind of attenuation constant, dimensionally the reciprocal of length. In the
International System of Units The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official s ...
(SI), it is expressed in
neper The neper (symbol: Np) is a logarithmic unit for ratios of measurements of physical field and power quantities, such as gain and loss of electronic signals. The unit's name is derived from the name of John Napier, the inventor of logarithms. ...
per
meter The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of of ...
or simply reciprocal of meter (m). That is, if  = 1 m, the wave's amplitude decreases by a factor of for each meter traveled.


Importance of volume viscosity

The law is amended to include a contribution by the
volume viscosity Volume viscosity (also called bulk viscosity, or second viscosity or, dilatational viscosity) is a material property relevant for characterizing fluid flow. Common symbols are \zeta, \mu', \mu_\mathrm, \kappa or \xi. It has dimensions (mass / (leng ...
: \alpha = \frac = \frac The volume viscosity coefficient is relevant when the fluid's
compressibility In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a f ...
cannot be ignored, such as in the case of ultrasound in water. The volume viscosity of water at 15 C is 3.09
centipoise The poise (symbol P; ) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = ...
.Litovitz, T.A. and Davis, C.M. In "Physical Acoustics", Ed. W.P.Mason, vol. 2, chapter 5, ''Academic Press'', NY, (1964)


Modification for very high frequencies

Stokes's law is actually an
asymptotic In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates Limit of a function#Limits at infinity, tends to infinity. In pro ...
approximation for low frequencies of a more general formula involving relaxation time : \begin 2\left(\frac\right)^2 &= \frac-\frac\\ \alpha &= \frac\sqrt\\ \tau &= \frac = \frac\\ \alpha &= \omega \sqrt\left(\frac \right)^\frac\\ \end The relaxation time for water is about per
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
, corresponding to an
angular frequency In physics, angular frequency (symbol ''ω''), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine ...
of
radians The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
(500 gigaradians) per
second The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
and therefore a
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
of about .


See also

*
Acoustic attenuation In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always th ...


References

{{reflist Colloidal chemistry Fluid dynamics Acoustics