
An astrophysical jet is an
astronomical
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest include ...
phenomenon where outflows of
ionised matter are emitted as extended beams along the
axis of rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
. When this greatly accelerated matter in the beam approaches the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
, astrophysical jets become relativistic jets as they show effects from
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
.
The formation and powering of astrophysical jets are highly complex phenomena that are associated with many types of
high-energy astronomical sources. They likely arise from dynamic interactions within
accretion disk
An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
s, whose active processes are commonly connected with compact central objects such as
black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s,
neutron star
A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s or
pulsar
A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s. One explanation is that tangled
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s are organised to aim two diametrically opposing beams away from the central source by angles only several degrees wide Jets may also be influenced by a
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
effect known as
frame-dragging
Frame-dragging is an effect on spacetime, predicted by Albert Einstein's General relativity, general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary Field (physics), field is one that is ...
.
Most of the largest and most active jets are created by
supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (). Black holes are a class of astronomical ...
s (SMBH) in the centre of
active galaxies such as
quasar
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s and radio galaxies or within galaxy clusters. Such jets can exceed millions of
parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (AU), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and ...
s in length.
Other astronomical objects that contain jets include
cataclysmic variable stars,
X-ray binaries and
gamma-ray burst
In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic events occurring in distant Galaxy, galaxies which represent the brightest and most powerful class of explosion in the universe. These extreme Electromagnetic radiation, ele ...
s (GRB). Jets on a much smaller scale (~parsecs) may be found in star forming regions, including
T Tauri star
T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus Molecular Cloud, Taurus star-forming region. They are found near mo ...
s and
Herbig–Haro object
Herbig–Haro (HH) objects are bright patches of nebula, nebulosity associated with newborn stars. They are formed when narrow jets of partially plasma (physics), ionised gas ejected by stars collide with nearby clouds of gas and dust at several ...
s; these objects are partially formed by the interaction of jets with the
interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
.
Bipolar outflow
A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae).
Protostars
I ...
s may also be associated with
protostar
A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. The p ...
s, or with evolved
post-AGB
A post-AGB star (pAGB, abbreviation of post-asymptotic giant branch) is a type of luminous supergiant star of intermediate mass in a very late phase of stellar evolution. The post-AGB stage occurs after the asymptotic giant branch (AGB or second-as ...
stars,
planetary nebula
A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.
The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
e and
bipolar nebula
A bipolar nebula is a type of nebula characterized by two lobes either side of a central star. About 10–20% of planetary nebulae are bipolar.
Formation
Though the exact causes of this nebular structure are not known, it is often thought to im ...
e.
Relativistic jets

Relativistic jets are beams of ionised matter accelerated close to the speed of light. Most have been observationally associated with central black holes of some
active galaxies,
radio galaxies
A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039 watt, W at radio ...
or
quasar
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s, and also by galactic
stellar black hole
A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be ...
s,
neutron star
A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s or
pulsar
A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s. Beam lengths may extend between several thousand, hundreds of thousands or millions of parsecs.
Jet velocities when approaching the speed of light show significant effects of the
special theory of relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper,
"On the Electrodynamics of Moving Bodies", the theory is presen ...
; for example,
relativistic beaming that changes the apparent beam brightness.
Massive central black holes in galaxies have the most powerful jets, but their structure and behaviours are similar to those of smaller galactic
neutron stars
A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to th ...
and black holes. These SMBH systems are often called
microquasar
A microquasar, a smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star, observable in sufficient details, in our own or nearby galaxy. The matter being pulled from ...
s and show a large range of velocities.
SS 433 jet, for example, has a mean velocity of 0.26
c. Relativistic jet formation may also explain observed gamma-ray bursts, which have the most relativistic jets known, being
ultrarelativistic.
Mechanisms behind the composition of jets remain uncertain, though some studies favour models where jets are composed of an electrically neutral mixture of
nuclei,
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, and
positron
The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
s, while others are consistent with jets composed of positron–electron plasma.
[Electron–positron Jets Associated with Quasar 3C 279](_blank)
/ref> Trace nuclei swept up in a relativistic positron–electron jet would be expected to have extremely high energy, as these heavier nuclei should attain velocity equal to the positron and electron velocity.
Rotation as possible energy source
Because of the enormous amount of energy needed to launch a relativistic jet, some jets are possibly powered by spinning black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s. However, the frequency of high-energy astrophysical sources with jets suggests combinations of different mechanisms indirectly identified with the energy within the associated accretion disk and X-ray emissions from the generating source. Two early theories have been used to explain how energy can be transferred from a black hole into an astrophysical jet:
* Blandford–Znajek process
The Blandford–Znajek process is a mechanism for the extraction of energy from a rotating black hole, introduced by Roger Blandford and Roman Znajek in 1977. This mechanism is the most preferred description of how Astrophysical jet, astrophysical ...
. This theory explains the extraction of energy from magnetic fields around an accretion disk, which are dragged and twisted by the spin of the black hole. Relativistic material is then feasibly launched by the tightening of the field lines.
* Penrose mechanism. Here energy is extracted from a rotating black hole
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry.
All currently known celestial objects, including planets, stars (Sun), galaxies, and black holes, spin about one ...
by frame dragging, which was later theoretically proven by Reva Kay Williams to be able to extract relativistic particle energy and momentum, and subsequently shown to be a possible mechanism for jet formation. This effect includes using general relativistic gravitomagnetism.
Relativistic jets from neutron stars
Jets may also be observed from spinning neutron stars. An example is pulsar IGR J11014-6103, which has the largest jet so far observed in the Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, and whose velocity is estimated at 80% the speed of light (0.8''c''). X-ray observations have been obtained, but there is no detected radio signature nor accretion disk. Initially, this pulsar was presumed to be rapidly spinning, but later measurements indicate the spin rate is only 15.9 Hz.[
] Such a slow spin rate and lack of accretion material suggest the jet is neither rotation nor accretion powered, though it appears aligned with the pulsar rotation axis and perpendicular to the pulsar's true motion.
Other images
File:Opo0113i.jpg, Illustration of the dynamics of a proplyd, including a jet
File:NGC 5128.jpg, Centaurus A in x-rays showing the relativistic jet
File:Onde-radioM87.jpg, The M87 jet seen by the Very Large Array
The Karl G. Jansky Very Large Array (VLA) is a centimeter-wavelength radio astronomy observatory in the southwestern United States built in the 1970s. It lies in central New Mexico on the Plains of San Agustin, between the towns of Magdalena, Ne ...
in radio frequency
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the u ...
(the viewing field is larger and rotated with respect to the above image.)
File:HST-3C66B-jet-O5BQ06010.gif, Hubble Legacy Archive Near- UV image of the relativistic jet in 3C 66B
File:hs-2015-19-a-small web.jpg, Galaxy NGC 3862, an extragalactic jet of material moving at nearly the speed of light can be seen at the three o'clock position.
File:Hubble Sees the Force Awakening in a Newborn Star (23807356641).jpg, Some of the jets in HH 24-26, which contains the highest concentration of jets known anywhere in the sky
See also
* disk wind slower wide-angle outflow, often occurring together with a jet
* Accretion disk
An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
* Bipolar outflow
A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae).
Protostars
I ...
* Blandford–Znajek process
The Blandford–Znajek process is a mechanism for the extraction of energy from a rotating black hole, introduced by Roger Blandford and Roman Znajek in 1977. This mechanism is the most preferred description of how Astrophysical jet, astrophysical ...
* Herbig–Haro object
Herbig–Haro (HH) objects are bright patches of nebula, nebulosity associated with newborn stars. They are formed when narrow jets of partially plasma (physics), ionised gas ejected by stars collide with nearby clouds of gas and dust at several ...
* Penrose process
* CGCG 049-033, elliptical galaxy located 600 million light-years from Earth, known for having the longest galactic jet discovered
* Gamma-ray burst
In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic events occurring in distant Galaxy, galaxies which represent the brightest and most powerful class of explosion in the universe. These extreme Electromagnetic radiation, ele ...
* Solar jet
References
External links
NASA – Ask an Astrophysicist: Black Hole Bipolar Jets
* {{Cite arXiv , eprint=astro-ph/0107228v1 , last1=Blandford , first1=Roger , title=Compact Objects and Accretion Disks , last2=Agol , first2=Eric , last3=Broderick , first3=Avery , last4=Heyl , first4=Jeremy , last5=Koopmans , first5=Leon , last6=Lee , first6=Hee-Won , year=2001
Hubble Video Shows Shock Collision inside Black Hole Jet
Article
Space plasmas
Black holes
Jet, Astrophysical
Concepts in stellar astronomy