HOME

TheInfoList



OR:

In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a section is a right inverse of some
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
. Dually, a retraction is a left inverse of some
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y is the identity morphism on Y, then g is a section of f, and f is a retraction of g. Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f: X\to Y is a split epimorphism with split monomorphism g: Y\to X, then X is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
of Y and the kernel of f. The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work.


Properties

* A section that is also an epimorphism is an isomorphism. Dually a retraction that is also a monomorphism is an isomorphism.


Terminology

The concept of a retraction in category theory comes from the essentially similar notion of a
retraction Retraction or retract(ed) may refer to: Academia * Retraction in academic publishing, withdrawals of previously published academic journal articles Mathematics * Retraction (category theory) * Retract (group theory) * Retraction (topology) Huma ...
in topology: f:X \to Y where Y is a subspace of X is a retraction in the topological sense, if it's a retraction of the inclusion map i:Y\hookrightarrow X in the category theory sense. The concept in topology was defined by Karol Borsuk in 1931. Borsuk's student, Samuel Eilenberg, was with Saunders Mac Lane the founder of category theory, and (as the earliest publications on category theory concerned various topological spaces) one might have expected this term to have initially be used. In fact, their earlier publications, up to, e.g., Mac Lane (1963)'s ''Homology'', used the term right inverse. It was not until 1965 when Eilenberg and John Coleman Moore coined the dual term 'coretraction' that Borsuk's term was lifted to category theory in general. The term coretraction gave way to the term section by the end of the 1960s. Both use of left/right inverse and section/retraction are commonly seen in the literature: the former use has the advantage that it is familiar from the theory of semigroups and monoids; the latter is considered less confusing by some because one does not have to think about 'which way around' composition goes, an issue that has become greater with the increasing popularity of the synonym ''f;g'' for ''g∘f''.Cf. e.g., https://blog.juliosong.com/linguistics/mathematics/category-theory-notes-9/


Examples

In the category of sets, every monomorphism (
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
function) with a non-empty domain is a section, and every epimorphism ( surjective function) is a retraction; the latter statement is equivalent to the axiom of choice. In the category of vector spaces over a field ''K'', every monomorphism and every epimorphism splits; this follows from the fact that linear maps can be uniquely defined by specifying their values on a basis. In the
category of abelian groups In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab. Properties The zero object of Ab is ...
, the epimorphism Z → Z/2Z which sends every integer to its remainder modulo 2 does not split; in fact the only morphism Z/2Z → Z is the zero map. Similarly, the natural monomorphism Z/2Z → Z/4Z doesn't split even though there is a non-trivial morphism Z/4Z → Z/2Z. The categorical concept of a section is important in
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
, and is also closely related to the notion of a section of a
fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
in topology: in the latter case, a section of a fiber bundle is a section of the bundle projection map of the fiber bundle. Given a
quotient space Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular: *Quotient space (topology), in case of topological spaces * Quotient space (linear algebra), in case of vector spaces *Quotient ...
\bar X with quotient map \pi\colon X \to \bar X, a section of \pi is called a transversal.


Bibliography

* *


See also

* Splitting lemma * Inverse function#Left and right inverses * Transversal (combinatorics)


Notes

{{Reflist Category theory Homological algebra