HOME

TheInfoList



OR:

Spin-density wave (SDW) and charge-density wave (CDW) are names for two similar low-energy ordered states of solids. Both these states occur at low temperature in
anisotropic Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
, low-dimensional materials or in metals that have high densities of states at the Fermi level N(E_F). Other low-temperature
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
s that occur in such materials are
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
,
ferromagnetism Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
and
antiferromagnetism In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
. The transition to the ordered states is driven by the condensation energy which is approximately N(E_F) \Delta^2 where \Delta is the magnitude of the energy gap opened by the transition. Fundamentally SDWs and CDWs involve the development of a
superstructure A superstructure is an upward extension of an existing structure above a baseline. This term is applied to various kinds of physical structures such as buildings, bridges, or ships. Aboard ships and large boats On water craft, the superstruct ...
in the form of a periodic modulation in the density of the electronic
spins The spins (as in having "the spins") is an adverse reaction of Substance intoxication, intoxication that causes a state of vertigo and nausea, causing one to feel as if "spinning out of control", especially when lying down. It is most commonly as ...
and charges with a characteristic spatial frequency q that does not transform according to the symmetry group that describes the ionic positions. The new periodicity associated with CDWs can easily be observed using
scanning tunneling microscopy A scanning tunneling microscope (STM) is a type of scanning probe microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in ...
or
electron diffraction Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. ...
while the more elusive SDWs are typically observed via
neutron diffraction Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of Neutron temperature, thermal or ...
or susceptibility measurements. If the new periodicity is a rational fraction or multiple of the
lattice constant A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal. A simple cubic crystal has ...
, the density wave is said to be commensurate; otherwise the density wave is termed incommensurate. Some solids with a high N(E_F) form density waves while others choose a superconducting or magnetic ground state at low temperatures, because of the existence of nesting vectors in the materials'
Fermi surface In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied electron states from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and sym ...
s. The concept of a nesting vector is illustrated in the Figure for the famous case of
chromium Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal. Chromium ...
, which transitions from a paramagnetic to SDW state at a
Néel temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie ...
of 311 K. Cr is a
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the Crystal structure#Unit cell, unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There ...
metal whose Fermi surface features many parallel boundaries between electron pockets centered at \Gamma and hole pockets at H. These large parallel regions can be spanned by the nesting wavevector q shown in red. The real-space periodicity of the resulting spin-density wave is given by 2\pi/q. The formation of an SDW with a corresponding spatial frequency causes the opening of an energy gap that lowers the system's energy. The existence of the SDW in Cr was first posited in 1960 by Albert Overhauser of
Purdue Purdue University is a public land-grant research university in West Lafayette, Indiana, United States, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donat ...
. The theory of CDWs was first put forth by
Rudolf Peierls Sir Rudolf Ernst Peierls, (; ; 5 June 1907 – 19 September 1995) was a German-born British physicist who played a major role in Tube Alloys, Britain's nuclear weapon programme, as well as the subsequent Manhattan Project, the combined Allied ...
of
Oxford University The University of Oxford is a collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the second-oldest continuously operating u ...
, who was trying to explain superconductivity. Many low-dimensional solids have anisotropic Fermi surfaces that have prominent nesting vectors. Well-known examples include layered materials like NbSe3, TaSe2 and K0.3MoO3 (a Chevrel phase) and quasi-1D organic conductors like TMTSF or TTF-TCNQ. CDWs are also common at the surface of solids where they are more commonly called
surface reconstruction Surface reconstruction refers to the process by which atoms at the surface of a crystal assume a different structure than that of the bulk. Surface reconstructions are important in that they help in the understanding of surface chemistry for variou ...
s or even dimerization. Surfaces so often support CDWs because they can be described by two-dimensional Fermi surfaces like those of layered materials. Chains of Au and In on semiconducting substrates have been shown to exhibit CDWs. More recently, monatomic chains of Co on a metallic substrate were experimentally shown to exhibit a CDW instability and was attributed to ferromagnetic correlations. The most intriguing properties of density waves are their dynamics. Under an appropriate electric field or magnetic field, a density wave will "slide" in the direction indicated by the field due to the electrostatic or magnetostatic force. Typically the sliding will not begin until a "depinning" threshold field is exceeded where the wave can escape from a potential well caused by a defect. The hysteretic motion of density waves is therefore not unlike that of
dislocations In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sli ...
or
magnetic domain A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When c ...
s. The current-voltage curve of a CDW solid therefore shows a very high electrical resistance up to the depinning voltage, above which it shows a nearly ohmic behavior. Under the depinning voltage (which depends on the purity of the material), the crystal is an insulator.


See also

* Peierls transition *
Superstructure (condensed matter) In solid state physics, a superstructure is some additional structure that is superimposed on a higher symmetry crystalline structure. A typical and important example is ferromagnetic ordering. In a wider sense, the term "superstructure" is appli ...


References


General References

#A pedagogical article about the topic
"Charge and Spin Density Waves,"
Stuart Brown and George Gruner, ''Scientific American'' 270, 50 (1994). #Authoritative work on Cr: #About Fermi surfaces and nesting: ''Electronic Structure and the Properties of Solids,'' Walter A. Harrison, . #Observation of CDW by ARPES:
Peierls instability.
#An extensive review of experiments as of 2013 by Pierre Monceau. {{Condensed matter physics topics Condensed matter physics Electric and magnetic fields in matter