HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a spherical polyhedron or spherical tiling is a tiling of the
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in which the surface is divided or partitioned by
great arc In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that a ...
s into bounded regions called
spherical polygon Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are gr ...
s. Much of the theory of symmetrical polyhedra is most conveniently derived in this way. The most familiar spherical polyhedron is the soccer ball, thought of as a spherical
truncated icosahedron In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. ...
. The next most popular spherical polyhedron is the beach ball, thought of as a
hosohedron In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular -gonal hosohedron has Schläfli symbol with each spherical lune havin ...
. Some "improper" polyhedra, such as
hosohedra In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular -gonal hosohedron has Schläfli symbol with each spherical lune havi ...
and their duals,
dihedra A dihedron is a type of polyhedron, made of two polygon faces which share the same set of ''n'' edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat ...
, exist as spherical polyhedra, but their flat-faced analogs are degenerate. The example hexagonal beach ball, is a hosohedron, and is its dual dihedron.


History

The first known man-made polyhedra are spherical polyhedra carved in stone. Many have been found in
Scotland Scotland (, ) is a country that is part of the United Kingdom. Covering the northern third of the island of Great Britain, mainland Scotland has a border with England to the southeast and is otherwise surrounded by the Atlantic Ocean to the ...
, and appear to date from the
neolithic The Neolithic period, or New Stone Age, is an Old World archaeological period and the final division of the Stone Age. It saw the Neolithic Revolution, a wide-ranging set of developments that appear to have arisen independently in several parts ...
period (the New Stone Age). During the 10th Century, the Islamic scholar Abū al-Wafā' Būzjānī (Abu'l Wafa) wrote the first serious study of spherical polyhedra. Two hundred years ago, at the start of the 19th Century, Poinsot used spherical polyhedra to discover the four regular star polyhedra. In the middle of the 20th Century, Coxeter used them to enumerate all but one of the uniform polyhedra, through the construction of kaleidoscopes ( Wythoff construction).


Examples

All regular polyhedra,
semiregular polyhedra In geometry, the term semiregular polyhedron (or semiregular polytope) is used variously by different authors. Definitions In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on ...
, and their duals can be projected onto the sphere as tilings:


Improper cases

Spherical tilings allow cases that polyhedra do not, namely
hosohedra In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular -gonal hosohedron has Schläfli symbol with each spherical lune havi ...
: figures as , and
dihedra A dihedron is a type of polyhedron, made of two polygon faces which share the same set of ''n'' edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat ...
: figures as . Generally, regular hosohedra and regular dihedra are used.


Relation to tilings of the projective plane

Spherical polyhedra having at least one inversive symmetry are related to
projective polyhedra In geometry, a (globally) projective polyhedron is a tessellation of the real projective plane. These are projective analogs of spherical polyhedra – tessellations of the sphere – and toroidal polyhedra – tessellations of the toroids. Projec ...
(tessellations of the real projective plane) – just as the sphere has a 2-to-1
covering map A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete sp ...
of the projective plane, projective polyhedra correspond under 2-fold cover to spherical polyhedra that are symmetric under
reflection through the origin In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invari ...
. The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the
centrally symmetric In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invari ...
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges c ...
s, as well as two infinite classes of even
dihedra A dihedron is a type of polyhedron, made of two polygon faces which share the same set of ''n'' edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat ...
and
hosohedra In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular -gonal hosohedron has Schläfli symbol with each spherical lune havi ...
: * Hemi-cube, /2 *
Hemi-octahedron A hemi-octahedron is an abstract regular polyhedron, containing half the faces of a regular octahedron. It has 4 triangular faces, 6 edges, and 3 vertices. Its dual polyhedron is the hemicube. It can be realized as a projective polyhedron (a tes ...
, /2 * Hemi-dodecahedron, /2 * Hemi-icosahedron, /2 * Hemi-dihedron, /2, p>=1 * Hemi-hosohedron, /2, p>=1


See also

*
Spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
* Spherical trigonometry *
Polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on th ...
* Projective polyhedron * Toroidal polyhedron * Conway polyhedron notation


References


Further reading

* * * {{Tessellation Polyhedra Tessellation Spheres