A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same
position in the sky – as viewed from the Earth or another
celestial body
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
– thus completing a full cycle of
astronomical seasons. For example, it is the time from
vernal equinox to the next vernal equinox, or from
summer solstice
The summer solstice or estival solstice occurs when one of Earth's poles has its maximum tilt toward the Sun. It happens twice yearly, once in each hemisphere ( Northern and Southern). The summer solstice is the day with the longest peri ...
to the next summer solstice. It is the type of year used by
tropical solar calendars.
The tropical year is one type of
astronomical year and particular
orbital period
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
. Another type is the
sidereal year
A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars.
Hence, for Earth, it is also the time taken for the Sun to return to t ...
(or sidereal orbital period), which is the time it takes Earth to complete one full orbit around the Sun as measured with respect to the
fixed stars, resulting in a duration of 20
minute
A minute is a unit of time defined as equal to 60 seconds.
It is not a unit in the International System of Units (SI), but is accepted for use with SI. The SI symbol for minutes is min (without a dot). The prime symbol is also sometimes used i ...
s longer than the tropical year, because of the
precession of the equinoxes
In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's Rotation around a fixed axis, rotational axis. In the absence of precession, the astronomical body's orbit would show ...
.
Since antiquity, astronomers have progressively refined the definition of the tropical year. The entry for "year, tropical" in the ''
Astronomical Almanac Online Glossary'' states:
An equivalent, more descriptive, definition is "The natural basis for computing passing tropical years is the mean longitude of the Sun reckoned from the precessionally moving equinox (the dynamical equinox or equinox of date). Whenever the longitude reaches a multiple of 360 degrees the
mean Sun crosses the vernal equinox and a new tropical year begins".
The mean tropical year in 2000 was 365.24219
ephemeris days, each ephemeris day lasting 86,400 SI seconds. This is 365.24217
mean solar days. For this reason, the calendar year is an approximation of the solar year: the
Gregorian calendar
The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian cale ...
(with its rules for catch-up
leap days) is designed so as to resynchronize the calendar year with the solar year at regular intervals.
History
Origin
The word "tropical" comes from the
Greek
Greek may refer to:
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group
*Greek language, a branch of the Indo-European language family
**Proto-Greek language, the assumed last common ancestor of all kno ...
''tropikos'' meaning "turn". Thus, the tropics of
Cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
and
Capricorn mark the extreme north and south
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
s where the Sun can appear directly overhead, and where it appears to "turn" in its annual seasonal motion. Because of this connection between the tropics and the seasonal cycle of the apparent position of the Sun, the word "tropical" was lent to the period of the seasonal cycle . The early Chinese, Hindus, Greeks, and others made approximate measures of the tropical year.
Early value, precession discovery
In the 2nd century BC
Hipparchus
Hipparchus (; , ; BC) was a Ancient Greek astronomy, Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equinoxes. Hippar ...
measured the time required for the Sun to travel from an
equinox
A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
to the same equinox again. He reckoned the length of the year to be 1/300 of a day less than 365.25 days (365 days, 5 hours, 55 minutes, 12 seconds, or 365.24667 days). Hipparchus used this method because he was better able to detect the time of the equinoxes, compared to that of the solstices.
Hipparchus also discovered that the equinoctial points moved along the
ecliptic
The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making.
Fr ...
(plane of the Earth's orbit, or what Hipparchus would have thought of as the plane of the Sun's orbit about the Earth) in a direction opposite that of the movement of the Sun, a phenomenon that came to be named "precession of the equinoxes". He reckoned the value as 1° per century, a value that was not improved upon until about 1000 years later, by
Islamic astronomers. Since this discovery a distinction has been made between the tropical year and the sidereal year.
Middle Ages and the Renaissance
During the Middle Ages and Renaissance a number of progressively better tables were published that allowed computation of the positions of the Sun,
Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
and
planets
A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets by the most restrictive definition of the te ...
relative to the fixed stars. An important application of these tables was the
reform of the calendar.
The
Alfonsine Tables, published in 1252, were based on the theories of
Ptolemy
Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
and were revised and updated after the original publication. The length of the tropical year was given as 365 solar days 5 hours 49 minutes 16 seconds (≈ 365.24255 days). This length was used in devising the
Gregorian calendar
The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian cale ...
of 1582.
In
Uzbekistan
, image_flag = Flag of Uzbekistan.svg
, image_coat = Emblem of Uzbekistan.svg
, symbol_type = Emblem of Uzbekistan, Emblem
, national_anthem = "State Anthem of Uzbekistan, State Anthem of the Republ ...
,
Ulugh Beg
Mīrzā Muhammad Tarāghāy bin Shāhrukh (; ), better known as Ulugh Beg (; 22 March 1394 – 27 October 1449), was a Timurid sultan, as well as an astronomer and mathematician.
Ulugh Beg was notable for his work in astronomy-related ma ...
's
Zij-i Sultani
''Zīj-i Sulṭānī'' () is a Zij astronomical table and star catalogue that was published by Ulugh Beg in 1438–1439. It was the joint product of the work of a group of Muslim astronomers working under the patronage of Ulugh Beg at Samarka ...
was published in 1437 and gave an estimate of 365 solar days 5 hours 49 minutes 15 seconds (365.242535 days).
In the 16th century
Copernicus
Nicolaus Copernicus (19 February 1473 – 24 May 1543) was a Renaissance polymath who formulated a mathematical model, model of Celestial spheres#Renaissance, the universe that placed heliocentrism, the Sun rather than Earth at its cen ...
put forward a
heliocentric cosmology. Erasmus Reinhold used Copernicus' theory to compute the
Prutenic Tables in 1551, and gave a tropical year length of 365 solar days, 5 hours, 55 minutes, 58 seconds (365.24720 days), based on the length of a
sidereal year
A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars.
Hence, for Earth, it is also the time taken for the Sun to return to t ...
and the presumed rate of precession. This was actually less accurate than the earlier value of the Alfonsine Tables.
Major advances in the 17th century were made by
Johannes Kepler
Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
and
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
. In 1609 and 1619 Kepler published his three laws of planetary motion. In 1627, Kepler used the observations of
Tycho Brahe
Tycho Brahe ( ; ; born Tyge Ottesen Brahe, ; 14 December 154624 October 1601), generally called Tycho for short, was a Danish astronomer of the Renaissance, known for his comprehensive and unprecedentedly accurate astronomical observations. He ...
and Waltherus to produce the most accurate tables up to that time, the
Rudolphine Tables
The ''Rudolphine Tables'' () consist of a star catalogue and planetary tables published by Johannes Kepler in 1627, using observational data collected by Tycho Brahe (1546–1601). The tables are named in memory of Rudolf II, Holy Roman Emper ...
. He evaluated the mean tropical year as 365 solar days, 5 hours, 48 minutes, 45 seconds (365.24219 days).
Newton's three laws of dynamics and theory of gravity were published in his ''
Philosophiæ Naturalis Principia Mathematica
(English: ''The Mathematical Principles of Natural Philosophy''), often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Lati ...
'' in 1687. Newton's theoretical and mathematical advances influenced tables by
Edmond Halley
Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720.
From an observatory he constructed on Saint Helena in 1676–77, Hal ...
published in 1693 and 1749 and provided the underpinnings of all solar system models until
Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's theory of
General relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
in the 20th century.
18th and 19th century
From the time of Hipparchus and Ptolemy, the year was based on two equinoxes (or two solstices) a number of years apart, to average out both observational errors and periodic variations (caused by the gravitational pull of the planets, and the small effect of
nutation on the equinox). These effects did not begin to be understood until Newton's time. To model short-term variations of the time between equinoxes (and prevent them from confounding efforts to measure long-term variations) requires precise observations and an elaborate theory of the apparent motion of the Sun. The necessary theories and mathematical tools came together in the 18th century due to the work of
Pierre-Simon de Laplace
Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
,
Joseph Louis Lagrange
Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangia[celestial mechanics
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...](_blank)
. They were able to compute periodic variations and separate them from the gradual mean motion. They could express the
mean longitude of the Sun in a polynomial such as:
:''L''
0 = ''A''
0 + ''A''
1''T'' + ''A''
2''T''
2 days
where ''T'' is the time in Julian centuries. The derivative of this formula is an expression of the mean angular velocity, and the inverse of this gives an expression for the length of the tropical year as a linear function of ''T''.
Two equations are given in the table. Both equations estimate that the tropical year gets roughly a half second shorter each century.
Newcomb's tables were sufficiently accurate that they were used by the joint American-British ''
Astronomical Almanac'' for the Sun,
Mercury,
Venus
Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
, and
Mars
Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
through 1983.
20th and 21st centuries
The length of the mean tropical year is derived from a model of the Solar System, so any advance that improves the solar system model potentially improves the accuracy of the mean tropical year. Many new observing instruments became available, including
*artificial satellites
*tracking of deep space probes such as
Pioneer 4 beginning in 1959
*
radars
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircr ...
able to measure the distance to other planets beginning in 1961
*
lunar laser ranging since the 1969
Apollo 11
Apollo 11 was a spaceflight conducted from July 16 to 24, 1969, by the United States and launched by NASA. It marked the first time that humans Moon landing, landed on the Moon. Commander Neil Armstrong and Lunar Module pilot Buzz Aldrin l ...
left the first of a series of
retroreflector
A retroreflector (sometimes called a retroflector or cataphote) is a device or surface that reflects light or other radiation back to its source with minimum scattering. This works at a wide range of angle of incidence (optics), angle of incidenc ...
s which allow greater accuracy than reflectorless measurements
*artificial satellites such as
LAGEOS (1976) and the
Global Positioning System
The Global Positioning System (GPS) is a satellite-based hyperbolic navigation system owned by the United States Space Force and operated by Mission Delta 31. It is one of the global navigation satellite systems (GNSS) that provide ge ...
(initial operation in 1993)
*
very long baseline interferometry
Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. T ...
which finds precise directions to
quasar
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s in distant
galaxies
A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
, and allows determination of the Earth's orientation with respect to these objects whose distance is so great they can be considered to show minimal space motion.
The complexity of the model used for the Solar System must be limited to the available computation facilities. In the 1920s punched card equipment came into use by L. J. Comrie in Britain. For the ''American Ephemeris'' an electromagnetic computer, the
IBM Selective Sequence Electronic Calculator was used since 1948. When modern computers became available, it was possible to compute ephemerides using
numerical integration
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral.
The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integr ...
rather than general theories; numerical integration came into use in 1984 for the joint US-UK almanacs.
Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's
General Theory of Relativity provided a more accurate theory, but the accuracy of theories and observations did not require the refinement provided by this theory (except for the advance of the perihelion of Mercury) until 1984. Time scales incorporated general relativity beginning in the 1970s.
A key development in understanding the tropical year over long periods of time is the discovery that the rate of rotation of the earth, or equivalently, the length of the
mean solar day, is not constant. William Ferrel in 1864 and
Charles-Eugène Delaunay in 1865 predicted that the rotation of the Earth is being retarded by tides. This could be verified by observation only in the 1920s with the very accurate
Shortt-Synchronome clock and later in the 1930s when
quartz clock
Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. The crystal oscillator, controlled by the resonant mechanical vibrations of the quartz crystal, creates a signal with ...
s began to replace pendulum clocks as time standards.
Time scales and calendar
Apparent solar time is the time indicated by a
sundial
A sundial is a horology, horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the position of the Sun, apparent position of the Sun in the sky. In the narrowest sense of the ...
, and is determined by the apparent motion of the Sun caused by the rotation of the Earth around its axis as well as the revolution of the Earth around the Sun.
Mean solar time
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based ...
is corrected for the periodic variations in the apparent velocity of the Sun as the Earth revolves in its orbit. The most important such time scale is
Universal Time
Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wi ...
, which is the mean solar time at 0 degrees
longitude
Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
(the
IERS Reference Meridian).
Civil time
In modern usage, civil time refers to statutory time as designated by civilian authorities. Modern civil time is generally national standard time in a time zone at a UTC offset, fixed offset from Coordinated Universal Time (UTC), possibly adjusted ...
is based on UT (actually
UTC), and civil calendars count mean solar days.
However the rotation of the Earth itself is irregular and is slowing down, with respect to more stable time indicators: specifically, the motion of planets, and atomic clocks.
Ephemeris time (ET) is the independent variable in the equations of motion of the Solar System, in particular, the equations from Newcomb's work, and this ET was in use from 1960 to 1984. These ephemerides were based on observations made in solar time over a period of several centuries, and as a consequence represent the mean solar second over that period. The
SI second
The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
, defined in atomic time, was intended to agree with the ephemeris second based on Newcomb's work, which in turn makes it agree with the mean solar second of the mid-19th century. ET as counted by atomic clocks was given a new name,
Terrestrial Time
Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth.
For example, the Astronomical Almanac uses ...
(TT), and for most purposes ET = TT =
International Atomic Time
International Atomic Time (abbreviated TAI, from its French name ) is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 atomi ...
+ 32.184 SI seconds. Since the era of the observations, the rotation of the Earth has slowed down and the mean solar second has grown somewhat longer than the SI second. As a result, the time scales of TT and UT1 build up a growing difference: the amount that TT is ahead of UT1 is known as
Δ''T'', or Delta ''T''. TT is ahead of UT1 by 69.28 seconds.
As a consequence, the tropical year following the seasons on Earth as counted in solar days of UT is increasingly out of sync with expressions for equinoxes in ephemerides in TT.
As explained below, long-term estimates of the length of the tropical year were used in connection with the reform of the
Julian calendar
The Julian calendar is a solar calendar of 365 days in every year with an additional leap day every fourth year (without exception). The Julian calendar is still used as a religious calendar in parts of the Eastern Orthodox Church and in parts ...
, which resulted in the Gregorian calendar. Participants in that reform were unaware of the non-uniform rotation of the Earth, but now this can be taken into account to some degree. The table below gives Morrison and Stephenson's estimates and
standard errors (''σ'') for ΔT at dates significant in the process of developing the Gregorian calendar.
The low-precision extrapolations are computed with an expression provided by Morrison and Stephenson:
:Δ''T'' in seconds = −20 + 32''t''
2
where ''t'' is measured in Julian centuries from 1820. The extrapolation is provided only to show Δ''T'' is not negligible when evaluating the calendar for long periods; Borkowski cautions that "many researchers have attempted to fit a parabola to the measured Δ''T'' values in order to determine the magnitude of the deceleration of the Earth's rotation. The results, when taken together, are rather discouraging."
Length of tropical year
One definition of the tropical year would be the time required for the Sun, beginning at a chosen ecliptic longitude, to make one complete cycle of the seasons and return to the same ecliptic longitude.
Mean time interval between equinoxes
Before considering an example, the
equinox
A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
must be examined. There are two important planes in solar system calculations: the plane of the
ecliptic
The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making.
Fr ...
(the Earth's orbit around the Sun), and the plane of the
celestial equator
The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. By extension, it is also a plane of reference in the equatorial coordinate system. Due to Earth's axial tilt, the celestial ...
(the Earth's equator projected into space). These two planes intersect in a line. One ''direction'' points to the so-called
vernal, northward, or March equinox which is given the symbol (the symbol looks like the horns of a
ram because it used to be toward the constellation
Aries). The opposite ''direction'' is given the symbol (because it used to be toward
Libra
Libra generally refers to:
* Libra (constellation), a constellation
* Libra (astrology), an astrological sign based on the star constellation
Libra may also refer to:
Arts and entertainment
* ''Libra'' (novel), a 1988 novel by Don DeLillo
Musi ...
). Because of the
precession of the equinoxes
In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's Rotation around a fixed axis, rotational axis. In the absence of precession, the astronomical body's orbit would show ...
and
nutation these directions change, compared to the direction of distant stars and galaxies, whose directions have no measurable motion due to their great distance (see
International Celestial Reference Frame
The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
).
The
ecliptic longitude of the Sun is the angle between and the Sun, measured eastward along the ecliptic. This creates a relative and not an absolute measurement, because as the Sun is moving, the direction the angle is measured from is also moving. It is convenient to have a fixed (with respect to distant stars) direction to measure from; the direction of at noon January 1, 2000, fills this role and is given the symbol
0.
There was an equinox on March 20, 2009, 11:44:43.6 TT. The 2010 March equinox was March 20, 17:33:18.1 TT, which gives an interval - and a duration of the tropical year - of 365 days 5 hours 48 minutes 34.5 seconds. While the Sun moves, moves in the opposite direction. When the Sun and met at the 2010 March equinox, the Sun had moved east 359°59'09" while had moved west 51" for a total of 360° (all with respect to
0). This is why the tropical year is 20 min. shorter than the sidereal year.
When tropical year measurements from several successive years are compared, variations are found which are due to the
perturbations by the Moon and planets acting on the Earth, and to nutation. Meeus and Savoie provided the following examples of intervals between March (northward) equinoxes:
Until the beginning of the 19th century, the length of the tropical year was found by comparing equinox dates that were separated by many years; this approach yielded the ''mean'' tropical year.
Different tropical year definitions
If a different starting longitude for the Sun is chosen than 0° (''i.e.'' ), then the duration for the Sun to return to the same longitude will be different. This is a second-order effect of the circumstance that the speed of the Earth (and conversely the apparent speed of the Sun) varies in its elliptical orbit: faster in the
perihelion
An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values.
Apsides perta ...
, slower in the
aphelion
An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values.
Apsides perta ...
. The equinox moves with respect to the perihelion (and both move with respect to the fixed sidereal frame). From one equinox passage to the next, or from one solstice passage to the next, the Sun completes not quite a full elliptic orbit. The time saved depends on where it starts in the orbit. If the starting point is close to the perihelion (such as the December solstice), then the speed is higher than average, and the apparent Sun saves little time for not having to cover a full circle: the "tropical year" is comparatively long. If the starting point is near aphelion, then the speed is lower and the time saved for not having to run the same small arc that the equinox has precessed is longer: that tropical year is comparatively short.
The "mean tropical year" is based on the
mean sun, and is not exactly equal to any of the times taken to go from an equinox to the next or from a solstice to the next.
The following values of time intervals between equinoxes and solstices were provided by Meeus and Savoie for the years
0 and 2000. These are smoothed values which take account of the Earth's orbit being elliptical, using well-known procedures (including solving
Kepler's equation
In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.
It was derived by Johannes Kepler in 1609 in Chapter 60 of his ''Astronomia nova'', and in book V of his ''Epitome of ...
). They do not take into account periodic variations due to factors such as the gravitational force of the orbiting Moon and gravitational forces from the other planets. Such perturbations are minor compared to the positional difference resulting from the orbit being elliptical rather than circular.
Mean tropical year current value
The mean tropical year on January 1, 2000, was or 365
ephemeris days, 5 hours, 48 minutes, 45.19 seconds. This changes slowly; an expression suitable for calculating the length of a tropical year in ephemeris days, between 8000 BC and 12000 AD is
:
where T is in Julian centuries of 36,525 days of 86,400 SI seconds measured from noon January 1, 2000, TT.
Modern astronomers define the tropical year as time for the
Sun's mean longitude to increase by 360°. The process for finding an expression for the length of the tropical year is to first find an expression for the Sun's mean longitude (with respect to ), such as Newcomb's expression given above, or Laskar's expression. When viewed over a one-year period, the mean longitude is very nearly a linear function of Terrestrial Time. To find the length of the tropical year, the mean longitude is differentiated, to give the angular speed of the Sun as a function of Terrestrial Time, and this angular speed is used to compute how long it would take for the Sun to move 360°.
The above formulae give the length of the tropical year in ephemeris days (equal to 86,400 SI seconds), not
solar day
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time.
The synodic day is distinguished from the sidereal day, which is ...
s. It is the number of solar days in a tropical year that is important for keeping the calendar in synch with the seasons (see below).
Calendar year
The
Gregorian calendar
The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian cale ...
, as used for civil and scientific purposes, is an international standard. It is a solar calendar that is designed to maintain synchrony with the mean tropical year. It has a cycle of 400 years (146,097 days). Each cycle repeats the months, dates, and weekdays. The average year length is 146,097/400 = = 365.2425 days per year, a close approximation to the mean tropical year of 365.2422 days.
The Gregorian calendar is a reformed version of the Julian calendar organized by the Catholic Church and enacted in 1582. By the time of the reform, the date of the vernal equinox had shifted about 10 days, from about March 21 at the time of the
First Council of Nicaea
The First Council of Nicaea ( ; ) was a council of Christian bishops convened in the Bithynian city of Nicaea (now İznik, Turkey) by the Roman Emperor Constantine I. The Council of Nicaea met from May until the end of July 325.
This ec ...
in 325, to about March 11. The motivation for the change was the correct observance of Easter. The rules used to
compute the date of Easter used a conventional date for the vernal equinox (March 21), and it was considered important to keep March 21 close to the actual equinox.
If society in the future still attaches importance to the synchronization between the civil calendar and the seasons, another reform of the calendar will eventually be necessary. According to Blackburn and Holford-Strevens (who used Newcomb's value for the tropical year) if the tropical year remained at its 1900 value of days the Gregorian calendar would be 3 days, 17 min, 33 s behind the Sun after 10,000 years. Aggravating this error, the length of the tropical year (measured in Terrestrial Time) is decreasing at a rate of approximately 0.53 s per century and the mean solar day is getting longer at a rate of about 1.5 ms per century. These effects will cause the calendar to be nearly a day behind in 3200. The number of solar days in a "tropical millennium" is decreasing by about 0.06 per millennium (neglecting the oscillatory changes in the real length of the tropical year).
[365242×1.5/8640000.] This means there should be fewer and fewer leap days as time goes on. One possible reform that has been proposed involves omitting the leap day in 3200, keeping 3600 and 4000 as leap years, and making all centennial years common except 4500, 5000, 5500, 6000, etc. (i.e. making centennial leap years occur once every 500 years instead of 400 starting from the year 4000), but the quantity
ΔT is not sufficiently predictable to form more precise proposals.
See also
*
Anomalistic year
*
Gregorian calendar
The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian cale ...
*
Sidereal and tropical astrology
Notes
References
*
* Via
*
* Note: In the article at this URL page 68 should be put before page 66.
*
*
*
*
*
*
*
Further reading
*
*
* Contains updates to .
* Referenced in ''Astronomical almanac for the year 2011'' and contains expressions used to derive the length of the tropical year.
External links
*
{{DEFAULTSORT:Tropical Year
Units of time
Calendars
Time in astronomy
Western astrology
Technical factors of astrology