
There are currently many research groups active in the field of
photovoltaics
Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commerciall ...
in
universities
A university () is an educational institution, institution of tertiary education and research which awards academic degrees in several Discipline (academia), academic disciplines. ''University'' is derived from the Latin phrase , which roughly ...
and research institutions around the world. This research can be categorized into three areas: making current technology
solar cells
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.
Silicon processing
One way of reducing the cost is to develop cheaper methods of obtaining silicon that is sufficiently pure. Silicon is a very common element, but is normally bound in silica, or
silica sand
Sand casting, also known as sand molded casting, is a metal casting process characterized by using sand—known as ''casting sand''—as the mold (manufacturing), mold material. The term "sand casting" can also refer to an object produced via th ...
. Processing silica (SiO
2) to produce silicon is a very high energy process - at current efficiencies, it takes one to two years for a conventional solar cell to generate as much energy as was used to make the silicon it contains. More energy efficient methods of synthesis are not only beneficial to the solar industry, but also to industries surrounding silicon technology as a whole.
The current industrial production of silicon is via the reaction between carbon (charcoal) and silica at a temperature around 1700 °C. In this process, known as carbothermic reduction, each tonne of silicon (metallurgical grade, about 98% pure) is produced with the emission of about 1.5 tonnes of carbon dioxide.
Solid silica can be directly converted (reduced) to pure silicon by electrolysis in a molten salt bath at a fairly mild temperature (800 to 900 °C). While this new process is in principle the same as the
FFC Cambridge Process which was first discovered in late 1996, the interesting laboratory finding is that such electrolytic silicon is in the form of porous silicon which turns readily into a fine powder, with a particle size of a few micrometers, and may therefore offer new opportunities for development of solar cell technologies.
Another approach is also to reduce the amount of silicon used and thus cost, is by micromachining wafers into very thin, virtually transparent layers that could be used as transparent architectural coverings.
The technique involves taking a silicon wafer, typically 1 to 2 mm thick, and making a multitude of parallel, transverse slices across the wafer, creating a large number of slivers that have a thickness of 50 micrometres and a width equal to the thickness of the original wafer. These slices are rotated 90 degrees, so that the surfaces corresponding to the faces of the original wafer become the edges of the slivers. The result is to convert, for example, a 150 mm diameter, 2 mm-thick wafer having an exposed silicon surface area of about 175 cm
2 per side into about 1000 slivers having dimensions of 100 mm × 2 mm × 0.1 mm, yielding a total exposed silicon surface area of about 2000 cm
2 per side. As a result of this rotation, the electrical doping and contacts that were on the face of the wafer are located at the edges of the sliver, rather than at the front and rear as in the case of conventional wafer cells. This has the interesting effect of making the cell sensitive from both the front and rear of the cell (a property known as bifaciality).
[ Using this technique, one silicon wafer is enough to build a 140 watt panel, compared to about 60 wafers needed for conventional modules of same power output.
]
Nanocrystalline solar cells
These structures make use of some of the same thin-film light absorbing materials but are overlain as an extremely thin absorber on a supporting matrix of conductive polymer or mesoporous metal oxide having a very high surface area to increase internal reflections (and hence increase the probability of light absorption). Using nanocrystals allows one to design architectures on the length scale of nanometers, the typical exciton diffusion length. In particular, single-nanocrystal ('channel') devices, an array of single p-n junctions between the electrodes and separated by a period of about a diffusion length, represent a new architecture for solar cells and potentially high efficiency.
Thin-film processing
Thin-film photovoltaic cells can use less than 1% of the expensive raw material (silicon or other light absorbers) compared to wafer-based solar cells, leading to a significant price drop per Watt peak capacity. There are many research groups around the world actively researching different thin-film approaches and/or materials.
One particularly promising technology is crystalline silicon
Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semicon ...
thin films on glass substrates. This technology combines the advantages of crystalline silicon as a solar cell material (abundance, non-toxicity, high efficiency, long-term stability) with the cost savings of using a thin-film approach.
Another interesting aspect of thin-film solar cells is the possibility to deposit the cells on all kind of materials, including flexible substrates (PET
A pet, or companion animal, is an animal kept primarily for a person's company or entertainment rather than as a working animal, livestock, or a laboratory animal. Popular pets are often considered to have attractive/ cute appearances, inte ...
for example), which opens a new dimension for new applications.
Metamorphic multijunction solar cell
As of December 2014, the world record for solar cell efficiency at 46% was achieved by using multi-junction concentrator In telecommunications, the term concentrator has the following meanings:
* In data transmission, a functional unit that permits a common path to handle more data sources than there are channels currently available within the path. A concentrator ...
solar cells, developed from collaboration efforts of Soitec, CEA-Leti, France together with Fraunhofer ISE, Germany.
The National Renewable Energy Laboratory
The National Renewable Energy Laboratory (NREL) in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation. NREL is a federally funded research and ...
(NREL) won one of
R&D Magazine
''s R&D 100 Awards for its Metamorphic Multijunction photovoltaic cell, an ultra-light and flexible cell that converts solar energy with record efficiency.[NREL: Feature Story - Photovoltaics Innovations Win 2 R&D 100 Awards]
/ref>
The ultra-light, highly efficient solar cell was developed at NREL and is being commercialized by Emcore Corp. of Albuquerque, N.M., in partnership with the Air Force Research Laboratories Space Vehicles Directorate at Kirtland Air Force Base
Kirtland Air Force Base is a United States Air Force base. It is located in the southeast quadrant of the Albuquerque, New Mexico, urban area, adjacent to the Albuquerque International Sunport. The base was named for the early Army aviator C ...
in Albuquerque.
It represents a new class of solar cells with clear advantages in performance, engineering design, operation and cost. For decades, conventional cells have featured wafers of semiconducting materials with similar crystalline
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macrosc ...
structure. Their performance and cost effectiveness is constrained by growing the cells in an upright configuration. Meanwhile, the cells are rigid, heavy and thick with a bottom layer made of germanium
Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
.
In the new method, the cell is grown upside down. These layers use high-energy materials with extremely high quality crystals, especially in the upper layers of the cell where most of the power is produced. Not all of the layers follow the lattice pattern of even atomic spacing. Instead, the cell includes a full range of atomic spacing, which allows for greater absorption and use of sunlight. The thick, rigid germanium layer is removed, reducing the cell's cost and 94% of its weight. By turning the conventional approach to cells on its head, the result is an ultra-light and flexible cell that also converts solar energy with record efficiency (40.8% under 326 suns concentration).
Polymer processing
The invention of conductive polymers (for which Alan Heeger, Alan G. MacDiarmid and Hideki Shirakawa
is a Japanese chemist, engineer, and Professor Emeritus at the University of Tsukuba and Zhejiang University. He is best known for his discovery of conductive polymers. He was co-recipient of the 2000 Nobel Prize in Chemistry jointly with Alan ...
were awarded a Nobel Prize
The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
) may lead to the development of much cheaper cells that are based on inexpensive plastics. However, organic solar cells generally suffer from degradation upon exposure to UV light, and hence have lifetimes which are far too short to be viable. The bonds in the polymers, are always susceptible to breaking up when radiated with shorter wavelengths. Additionally, the conjugated double bond systems in the polymers which carry the charge, react more readily with light and oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. So most conductive polymers, being highly unsaturated and reactive, are highly sensitive to atmospheric moisture and oxidation, making commercial applications difficult.
Nanoparticle processing
Experimental non-silicon solar panels can be made of quantum heterostructures, e.g. carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''S ...
s or quantum dot
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
s, embedded in conductive polymers or mesoporous metal oxides. In addition, thin films of many of these materials on conventional silicon solar cells can increase the optical coupling efficiency into the silicon cell, thus boosting the overall efficiency. By varying the size of the quantum dots, the cells can be tuned to absorb different wavelengths. Although the research is still in its infancy, quantum dot
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
modified photovoltaics may be able to achieve up to 42% energy conversion efficiency
Energy conversion efficiency (''η'') is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radi ...
due to multiple exciton generation (MEG).
MIT researchers have found a way of using a virus to improve solar cell efficiency by a third.
Transparent conductors
Many new solar cells use transparent thin films that are also conductors of electrical charge. The dominant conductive thin films used in research now are transparent conductive oxides (abbreviated "TCO"), and include fluorine-doped tin oxide (SnO2:F, or "FTO"), doped zinc oxide
Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
(e.g.: ZnO:Al), and indium tin oxide
Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can be described as either a ceramic or an alloy. Indium tin oxide is typically encountered as an oxygen-saturate ...
(abbreviated "ITO"). These conductive films are also used in the LCD industry for flat panel displays. The dual function of a TCO allows light to pass through a substrate window to the active light-absorbing material beneath, and also serves as an ohmic contact to transport photogenerated charge carriers away from that light-absorbing material. The present TCO materials are effective for research, but perhaps are not yet optimized for large-scale photovoltaic production. They require very special deposition conditions at high vacuum, they can sometimes suffer from poor mechanical strength, and most have poor transmittance in the infrared portion of the spectrum (e.g.: ITO thin films can also be used as infrared filters in airplane windows). These factors make large-scale manufacturing more costly.
A relatively new area has emerged using carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''S ...
networks as a transparent conductor for organic solar cells. Nanotube networks are flexible and can be deposited on surfaces a variety of ways. With some treatment, nanotube films can be highly transparent in the infrared, possibly enabling efficient low-bandgap solar cells. Nanotube networks are p-type conductors, whereas traditional transparent conductors are exclusively n-type. The availability of a p-type transparent conductor could lead to new cell designs that simplify manufacturing and improve efficiency.
Silicon wafer-based solar cells
Despite the numerous attempts at making better solar cells by using new and exotic materials, the reality is that the photovoltaics market is still dominated by silicon wafer-based solar cells (first-generation solar cells). This means that most solar cell manufacturers are currently equipped to produce this type of solar cells. Consequently, a large body of research is being done all over the world to manufacture silicon wafer-based solar cells at lower cost and to increase the conversion efficiencies without an exorbitant increase in production cost. The ultimate goal for both wafer-based and alternative photovoltaic concepts is to produce solar electricity at a cost comparable to currently market-dominant coal, natural gas, and nuclear power in order to make it the leading primary energy source. To achieve this it may be necessary to reduce the cost of installed solar systems from currently about US$1.80 (for bulk Si technologies) to about US$0.50 per Watt peak power. Since a major part of the final cost of a traditional bulk silicon module is related to the high cost of solar grade polysilicon feedstock (about US$0.4/Watt peak) there exists substantial drive to make Si solar cells thinner (material savings) or to make solar cells from cheaper upgraded metallurgical silicon (so called "dirty Si").
IBM
International Business Machines Corporation (using the trademark IBM), nicknamed Big Blue, is an American Multinational corporation, multinational technology company headquartered in Armonk, New York, and present in over 175 countries. It is ...
has a semiconductor wafer reclamation process that uses a specialized pattern removal technique to repurpose scrap semiconductor wafers to a form used to manufacture silicon-based solar panels. The new process was recently awarded the “2007 Most Valuable Pollution Prevention Award” from The National Pollution Prevention Roundtable (NPPR).
Infrared solar cells
Researchers at Idaho National Laboratory
Idaho National Laboratory (INL) is one of the national laboratories of the United States Department of Energy and is managed by the Battelle Energy Alliance. Historically, the lab has been involved with nuclear research, although the labora ...
, along with partners at Lightwave Power Inc. in Cambridge, MA
Cambridge ( ) is a city in Middlesex County, Massachusetts, United States. It is a suburb in the Greater Boston metropolitan area, located directly across the Charles River from Boston. The city's population as of the 2020 U.S. census was 118, ...
and Patrick Pinhero of the University of Missouri
The University of Missouri (Mizzou or MU) is a public university, public Land-grant university, land-grant research university in Columbia, Missouri, United States. It is Missouri's largest university and the flagship of the four-campus Univers ...
, have devised an inexpensive way to produce plastic sheets containing billions of nanoantennas that collect heat energy generated by the sun and other sources, which garnered two 2007 Nano50 awards. The company ceased operations in 2010. While methods to convert the energy into usable electricity still need to be developed, the sheets could one day be manufactured as lightweight "skins" that power everything from hybrid car
A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids.
Hybrid powertrain ...
s to computer
A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
s and mobile phones with higher efficiency than traditional solar cells. The nanoantennas target mid-infrared rays, which the Earth continuously radiates as heat after absorbing energy from the sun during the day; also double-sided nanoantenna sheets can harvest energy from different parts of the Sun's spectrum. In contrast, traditional solar cells can only use visible light, rendering them idle after dark.
Since 2012 the group of Roberto Germano is working on the Oxhydroelectric effect, which generates voltage and electric current in pure liquid water, after creating a physical (not chemical) asymmetry in the liquid water e.g. thanks to a strongly hydrophile
A hydrophile is a molecule or other molecular entity that is intermolecular force, attracted to water molecules and tends to be dissolution (chemistry), dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clar ...
polymer, such as Nafion
Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer synthesized in 1962 by Dr. Donald J. Connolly at the DuPont Experimental Station in Wilmington Delaware (U.S. Patent 3,282,875). Additional work on the polym ...
.[
]
This research group is based in Naples
Naples ( ; ; ) is the Regions of Italy, regional capital of Campania and the third-largest city of Italy, after Rome and Milan, with a population of 908,082 within the city's administrative limits as of 2025, while its Metropolitan City of N ...
, Italy
Italy, officially the Italian Republic, is a country in Southern Europe, Southern and Western Europe, Western Europe. It consists of Italian Peninsula, a peninsula that extends into the Mediterranean Sea, with the Alps on its northern land b ...
, the research started as a side project in Germano's "technology transfer company" Promete s.r.l. and since 2023 it is conducted in Oxhy s.r.l., a startup created with the purpose to further develop this line of research.
UV solar cells
Japan's (AIST) has succeeded in developing a transparent solar cell that uses ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
(UV) light to generate electricity but allows visible light to pass through it. Most conventional solar cells use visible and infrared light to generate electricity. Used to replace conventional window glass, the installation surface area could be large, leading to potential uses that take advantage of the combined functions of power generation, lighting and temperature control.
This transparent, UV-absorbing system was achieved by using an organic-inorganic
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''.
Inor ...
heterostructure
A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in m ...
made of the p-type semiconducting polymer PEDOT:PSS film deposited on a Nb-doped strontium titanate
Strontium titanate is an oxide of strontium and titanium with the chemical formula strontium, Srtitanium, Tioxygen, O3. At room temperature, it is a centrosymmetric paraelectricity, paraelectric material with a Perovskite (structure), perovskite st ...
substrate. PEDOT:PSS is easily fabricated into thin films due to its stability in air and its solubility in water. These solar cells are only activated in the UV region and result in a relatively high quantum yield of 16% electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
/photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
. Future work in this technology involves replacing the strontium titanate substrate with a strontium titanate film deposited on a glass substrate in order to achieve a low-cost, large-area manufacture.
Since then, other methods have been discovered to include the UV wavelengths in solar cell power generation. Some companies report using nano- phosphors as a transparent coating to turn UV light into visible light. Others have reported extending the absorption range of single-junction photovoltaic cells by doping a wide band gap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
transparent semiconductor such as GaN with a transition metal
In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
such as manganese
Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
.
Flexible solar cell research
Flexible solar cell research is a research-level technology, an example of which was created at the Massachusetts Institute of Technology
The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
in which solar cells
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. are manufactured by depositing photovoltaic material on flexible substrates, such as ordinary paper, using chemical vapor deposition
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
In typical CVD, the wafer (electro ...
technology. The technology for manufacturing solar cells on paper was developed by a group of researchers from the Massachusetts Institute of Technology
The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
with support from the National Science Foundation
The U.S. National Science Foundation (NSF) is an Independent agencies of the United States government#Examples of independent agencies, independent agency of the Federal government of the United States, United States federal government that su ...
and the Eni-MIT Alliance Solar Frontiers Program.
3D solar cells
Three-dimensional solar cells that capture nearly all of the light that strikes them and could boost the efficiency of photovoltaic systems while reducing their size, weight and mechanical complexity are under development. The new 3D solar cells, created at the Georgia Tech Research Institute, capture photons from sunlight using an array of miniature “tower” structures that resemble high-rise buildings in a city street grid. Solar3D, Inc. plans to commercialize such 3D cells, but its technology is currently patent-pending.
Luminescent solar concentrator
Luminescent solar concentrators convert sunlight or other sources of light into preferred frequencies; they concentrate the output for conversion into desirable forms of power, such as electricity. They rely on luminescence
Luminescence is a spontaneous emission of radiation from an electronically or vibrationally excited species not in thermal equilibrium with its environment. A luminescent object emits ''cold light'' in contrast to incandescence, where an obje ...
, typically fluorescence
Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
, in media such as liquids, glasses, or plastics treated with a suitable coating or dopant
A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optics, optical properties. The amount of dopant is typically very low compared to the material b ...
. The structures are configured to direct the output from a large input area onto a small converter, where the concentrated energy generates photoelectricity. The objective is to collect light over a large area at low cost; luminescent concentrator panels can be made cheaply from materials such as glasses or plastics, while photovoltaic cells are high-precision, high-technology devices, and accordingly expensive to construct in large sizes.
Research is in progress at universities such as Radboud University Nijmegen
Radboud University (abbreviated as RU, , formerly ) is a public university, public research university located in Nijmegen, Netherlands. RU has seven faculties and more than 24,000 students.
Established in 1923, Radboud University has consistentl ...
and Delft University of Technology
The Delft University of Technology (TU Delft; ) is the oldest and largest Dutch public university, public Institute of technology, technical university, located in Delft, Netherlands. It specializes in engineering, technology, computing, design, a ...
. For example, at Massachusetts Institute of Technology
The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
researchers have developed approaches for conversion of windows into sunlight concentrators for generation of electricity. They paint a mixture of dyes onto a pane of glass or plastic. The dyes absorb sunlight and re-emit it as fluorescence within the glass, where it is confined by internal reflection, emerging at the edges of the glass, where it encounters solar cells optimized for conversion of such concentrated sunlight. The concentration factor is about 40, and the optical design yields a solar concentrator that unlike lens-based concentrators, need not be directed accurately at the sun, and can produce output even from diffuse light
Covalent Solar
is working on commercialization of the process.
Metamaterials
Metamaterials are heterogeneous materials employing the juxtaposition of many microscopic elements, giving rise to properties not seen in ordinary solids. Using these, it ''may'' become possible to fashion solar cells that are excellent absorbers over a narrow range of wavelengths. High absorption in the microwave regime has been demonstrated, but not yet in the 300-1100-nm wavelength regime.
Photovoltaic thermal hybrid
Some systems combine photovoltaic with thermal solar, with the advantage that the thermal solar part carries heat away and cools the photovoltaic cells. Keeping temperature down lowers the resistance and improves the cell efficiency.
Penta-based photovoltaics
Pentacene-based photovoltaics are claimed to improve the energy-efficiency ratio to up to 95%, effectively doubling the efficiency of today's most efficient techniques.
Intermediate band
Intermediate band photovoltaics in solar cell research provides methods for exceeding the Shockley–Queisser limit on the efficiency of a cell. It introduces an intermediate band (IB) energy level in between the valence and conduction bands. Theoretically, introducing an IB allows two photons
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
with energy less than the bandgap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the ...
to excite an electron from the valence band
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
to the conduction band
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
. This increases the induced photocurrent and thereby efficiency.
Luque
Luque () is a city in Central Department of Paraguay, part of the Gran Asunción metropolitan area. Both 1635 and 1750 have been recorded as dates of its founding. It was temporarily the capital of Paraguay in 1868 during the Paraguayan War ...
and Marti first derived a theoretical limit for an IB device with one midgap energy level using detailed balance
The principle of detailed balance can be used in Kinetics (physics), kinetic systems which are decomposed into elementary processes (collisions, or steps, or elementary reactions). It states that at Thermodynamic equilibrium, equilibrium, each elem ...
. They assumed no carriers were collected at the IB and that the device was under full concentration. They found the maximum efficiency to be 63.2%, for a bandgap of 1.95eV with the IB 0.71eV from either the valence or conduction band.
Under one sun illumination the limiting efficiency is 47%.
References
External links
Photovoltaic technologies beyond conventional silicon
(IDTechEx).
{{DEFAULTSORT:Solar Cell Research
Solar cells
Energy conversion
Photovoltaics