HOME

TheInfoList



OR:

Sodium channels are
integral membrane protein An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. IMPs comp ...
s that form
ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by Gating (electrophysiol ...
s, conducting
sodium ions Sodium is a chemical element; it has symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope ...
(Na+) through a cell's
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
. They belong to the superfamily of cation channels.


Classification

They are classified into 2 types:


Function

In
excitable cell Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is th ...
s such as
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s, myocytes, and certain types of
glia Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (the brain and the spinal cord) and in the peripheral nervous system that do not produce electrical impulses. The neuroglia make up ...
, sodium channels are responsible for the rising phase of
action potentials An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. ...
. These channels go through three different states called resting, active and inactive states. Even though the resting and inactive states would not allow the ions to flow through the channels the difference exists with respect to their structural conformation.


Selectivity

Sodium channels are highly selective for the transport of ions across cell membranes. The high selectivity with respect to the sodium ion is achieved in many different ways. All involve encapsulation of the sodium ion in a cavity of specific size within a larger molecule.


Voltage-gated sodium channels


Structure

Sodium channels consist of large alpha subunits that associate with accessory proteins, such as beta subunits. An alpha subunit forms the core of the channel and is functional on its own. When the alpha subunit protein is expressed by a cell, it is able to form a pore in the cell membrane that conducts Na+ in a voltage-dependent way, even if beta subunits or other known modulating proteins are not expressed. When accessory proteins assemble with α subunits, the resulting complex can display altered voltage dependence and cellular localization. The alpha subunit consists of four repeat domains, labelled I through IV, each containing six membrane-spanning segments, labelled S1 through S6. The highly conserved S4 segment acts as the channel's voltage sensor. The voltage sensitivity of this channel is due to positive amino acids located at every third position. When stimulated by a change in transmembrane voltage, this segment moves toward the extracellular side of the cell membrane, allowing the channel to become permeable to ions. The ions are conducted through the central pore cavity, which consists of two main regions. The more external (i.e., more extracellular) portion of the pore is formed by the "P-loops" (the region between S5 and S6) of the four domains. This region is the most narrow part of the pore and is responsible for its ion selectivity. The inner portion (i.e., more cytoplasmic) of the pore is the pore gate and is formed by the combined S5 and S6 segments of the four domains. The pore domain also features lateral tunnels or fenestrations that run perpendicular to the pore axis. These fenestrations that connect the central cavity to the membrane are proposed to be important for drug accessibility. In mammalian sodium channels, the region linking domains III and IV is also important for channel function. This DIII-IV linker is responsible for wedging the pore gate shut after channel opening, inactivating it.


Gating

Voltage-gated Na+ channels have three main conformational states: closed, open and inactivated. Forward/back transitions between these states are correspondingly referred to as activation/deactivation (between open and closed, respectively), inactivation/reactivation (between inactivated and open, respectively), and recovery from inactivation/closed-state inactivation (between inactivated and closed, respectively). Closed and inactivated states are ion impermeable. Before an action potential occurs, the axonal membrane is at its normal
resting potential The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The re ...
, about −70 mV in most human neurons, and Na+ channels are in their deactivated state, blocked on the extracellular side by their activation gates. In response to an increase of the membrane potential to about −55 mV (in this case, caused by an action potential), the activation gates open, allowing positively charged Na+ ions to flow into the neuron through the channels, and causing the voltage across the neuronal membrane to increase to +30 mV in human neurons. Because the voltage across the membrane is initially negative, as its voltage increases ''to'' and ''past'' zero (from −70 mV at rest to a maximum of +30 mV), it is said to depolarize. This increase in voltage constitutes the rising phase of an action potential. At the peak of the action potential, when enough Na+ has entered the neuron and the membrane's potential has become high enough, the Na+ channels inactivate themselves by closing their inactivation gates. The inactivation gate can be thought of as a "plug" tethered to domains III and IV of the channel's intracellular alpha subunit. Closure of the inactivation gate causes Na+ flow through the channel to stop, which in turn causes the membrane potential to stop rising. The closing of the inactivation gate creates a refractory period within each individual Na+ channel. This refractory period eliminates the possibility of an action potential moving in the opposite direction back towards the soma. With its inactivation gate closed, the channel is said to be inactivated. With the Na+ channel no longer contributing to the membrane potential, the potential decreases back to its resting potential as the neuron repolarizes and subsequently hyperpolarizes itself, and this constitutes the falling phase of an action potential. The refractory period of each channel is therefore vital in propagating the action potential unidirectionally down an axon for proper communication between neurons. When the membrane's voltage becomes low enough, the inactivation gate reopens and the activation gate closes in a process called deinactivation. With the activation gate closed and the inactivation gate open, the Na+ channel is once again in its deactivated state, and is ready to participate in another action potential. When any kind of ion channel does not inactivate itself, it is said to be persistently (or tonically) active. Some kinds of ion channels are naturally persistently active. However, genetic mutations that cause persistent activity in other channels can cause disease by creating excessive activity of certain kinds of neurons. Mutations that interfere with Na+ channel inactivation can contribute to cardiovascular diseases or epileptic seizures by window currents, which can cause muscle and/or nerve cells to become over-excited.


Modeling the behavior of gates

The temporal behavior of Na+ channels can be modeled by a Markovian scheme or by the Hodgkin–Huxley-type formalism. In the former scheme, each channel occupies a distinct
state State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
with differential equations describing transitions between states; in the latter, the channels are treated as a
population Population is a set of humans or other organisms in a given region or area. Governments conduct a census to quantify the resident population size within a given jurisdiction. The term is also applied to non-human animals, microorganisms, and pl ...
that are affected by three independent gating variables. Each of these variables can attain a value between 1 (fully permeant to ions) and 0 (fully non-permeant), the product of these variables yielding the percentage of conducting channels. The Hodgkin–Huxley model can be shown to be equivalent to a Markovian model.


Impermeability to other ions

The pore of sodium channels contains a selectivity filter made of negatively charged
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
residues, which attract the positive Na+ ion and keep out negatively charged ions such as
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
. The cations flow into a more constricted part of the pore that is 0.3 by 0.5 nm wide, which is just large enough to allow a single Na+ ion with a water
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
associated to pass through. The larger K+ ion cannot fit through this area. Ions of different sizes also cannot interact as well with the negatively charged
glutamic acid Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α- amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can ...
residues that line the pore.


Diversity

Voltage-gated sodium channels normally consist of an alpha subunit that forms the ion conduction pore and one to two beta subunits that have several functions including modulation of channel gating. Expression of the alpha subunit alone is sufficient to produce a functional channel.


Alpha subunits

The family of sodium channels has 9 known members, with amino acid identity >50% in the trans-membrane segments and extracellular loop regions. A standardized nomenclature for sodium channels is currently used and is maintained by the IUPHAR. The proteins of these channels are named Nav1.1 through Nav1.9. The gene names are referred to as SCN1A through SCN5A, then SCN8A through SCN11A. The "tenth member", Nax, does not act in a voltage-gated way. It has a loosely similar overall structure. Not much is known about its real function, other than that it also associates with beta subunits. The probable evolutionary relationship between these channels, based on the similarity of their amino acid sequences, is shown in figure 1. The individual sodium channels are distinguished not only by differences in their sequence but also by their kinetics and expression profiles. Some of this data is summarized in table 1, below.


Beta subunits

Sodium channel beta subunits are type 1 transmembrane glycoproteins with an extracellular N-terminus and a cytoplasmic C-terminus. As members of the Ig superfamily, beta subunits contain a prototypic V-set Ig loop in their extracellular domain. They do not share any homology with their counterparts of calcium and potassium channels. Instead, they are homologous to neural cell adhesion molecules (CAMs) and the large family of L1 CAMs. There are four distinct betas named in order of discovery: SCN1B, SCN2B, SCN3B, SCN4B (table 2). Beta 1 and beta 3 interact with the alpha subunit non-covalently, whereas beta 2 and beta 4 associate with alpha via disulfide bond. Sodium channels are more likely to stay open at the subthreshold membrane potential when interacting with beta toxins, which in turn induces an immediate sensation of pain.


Role of beta subunits as cell adhesion molecules

In addition to regulating channel gating, sodium channel beta subunits also modulate channel expression and form links to the
intracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
via ankyrin and
spectrin Spectrin is a cytoskeletal protein that lines the intracellular side of the plasma membrane in eukaryotic cells. Spectrin forms pentagonal or hexagonal arrangements, forming a scaffold and playing an important role in maintenance of plasma mem ...
. Voltage-gated sodium channels also assemble with a variety of other proteins, such as FHF proteins (Fibroblast growth factor Homologous Factor), calmodulin, cytoskeleton or regulatory kinases, which form a complex with sodium channels, influencing its expression and/or function. Several beta subunits interact with one or more
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
(ECM) molecules. Contactin, also known as F3 or F11, associates with beta 1 as shown via co-immunoprecipitation.
Fibronectin Fibronectin is a high- molecular weight (~500-~600 kDa) glycoprotein of the extracellular matrix that binds to membrane-spanning receptor proteins called integrins. Fibronectin also binds to other extracellular matrix proteins such as col ...
-like (FN-like) repeats of
Tenascin Tenascins are extracellular matrix glycoproteins. They are abundant in the extracellular matrix of developing vertebrate embryos and they reappear around healing wounds and in the stroma of some tumors. Types There are four members of the tena ...
-C and
Tenascin Tenascins are extracellular matrix glycoproteins. They are abundant in the extracellular matrix of developing vertebrate embryos and they reappear around healing wounds and in the stroma of some tumors. Types There are four members of the tena ...
-R bind with beta 2 in contrast to the Epidermal growth factor-like (EGF-like) repeats that repel beta2. A disintegrin and metalloproteinase (ADAM) 10 sheds beta 2's
ectodomain An ectodomain is the domain of a membrane protein that extends into the extracellular space (the space outside a cell). Ectodomains are usually the parts of proteins that initiate contact with surfaces, which leads to signal transduction. A n ...
possibly inducing neurite outgrowth. Beta 3 and beta 1 bind to neurofascin at Nodes of Ranvier in developing neurons.


Ligand-gated sodium channels

Ligand-gated Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
sodium channels are activated by binding of a
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
instead of a change in membrane potential. They are found, e.g. in the
neuromuscular junction A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. Muscles require innervation to ...
as nicotinic receptors, where the ligands are
acetylcholine Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
molecules. Most channels of this type are permeable to potassium to some degree as well as to sodium.


Role in action potential

Voltage-gated sodium channels play an important role in
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
s. If enough channels open when there is a change in the cell's
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is th ...
, a small but significant number of Na+ ions will move into the cell down their
electrochemical gradient An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: * The chemical gradient, or difference in Concentration, solute concentration across ...
, further depolarizing the cell. Thus, the more Na+ channels localized in a region of a cell's membrane the faster the action potential will propagate and the more excitable that area of the cell will be. This is an example of a
positive feedback loop Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop where the outcome of a process reinforces the inciting process to build momentum. As such, these forces can exacerbate the effects ...
. The ability of these channels to assume a closed-inactivated state causes the refractory period and is critical for the propagation of action potentials down an
axon An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
. Na+ channels both open and close more quickly than K+ channels, producing an influx of positive charge (Na+) toward the beginning of the
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
and an efflux (K+) toward the end. Ligand-gated sodium channels, on the other hand, create the change in the membrane potential in the first place, in response to the binding of a ligand to it. Leak sodium channels additionally contribute to action potential regulation by modulating the resting potential (and in turn, the excitability) of a cell.


Pharmacologic modulation


Blockers


Activators

The following naturally produced substances persistently activate (open) sodium channels: *
Alkaloid Alkaloids are a broad class of natural product, naturally occurring organic compounds that contain at least one nitrogen atom. Some synthetic compounds of similar structure may also be termed alkaloids. Alkaloids are produced by a large varie ...
-based toxins **
aconitine Aconitine is an alkaloid toxin produced by various plant species belonging to the genus ''Aconitum'' (family Ranunculaceae), commonly known by the names wolfsbane and monkshood. Aconitine is notorious for its toxic properties. Structure and rea ...
** batrachotoxin ** brevetoxin **
ciguatoxin image:ciguatoxin.svg, 300px, class=skin-invert-image, Chemical structure of the ciguatoxin CTX1B Ciguatoxins are a class of toxic Polycyclic compound, polycyclic polyethers found in fish that cause ciguatera. There are several different chemi ...
** delphinine ** some
grayanotoxins Grayanotoxins are a group of closely related neurotoxins named after ''Leucothoe grayana'', a plant native to Japan and named for 19th-century American botanist Asa Gray. Grayanotoxin I (grayanotoxane-3,5,6,10,14,16-hexol 14-acetate) is also known ...
, e.g., grayanotoxin I (other granotoxins inactive, or close, sodium channels) ** veratridine


Gating modifiers

The following toxins modify the gating of sodium channels: *
Peptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
-based toxins **
μ-Conotoxin A conotoxin is one of a group of Neurotoxicity, neurotoxic peptides isolated from the venom of the marine cone snail, genus ''Conus''. Conotoxins, which are peptides consisting of 10 to 30 amino acid residues, typically have one or more disulfi ...
** δ-Atracotoxin ** Scorpion venom toxins


Sodium leak channel (NALCN)

Sodium leak channels do not show any voltage or ligand gating. Instead, they are always open or "leaking" a small background current to regulate the resting membrane potential of a neuron. In most animals, a single gene encodes the NALCN (sodium leak channel, nonselective) protein.


Structural and functional differences

Despite following the same basic structure as other sodium channels, NALCN is not sensitive to voltage changes. The voltage-sensitive S4 transmembrane domain of NALCN has fewer positively charged amino acids (13 instead of a voltage gated channel's 21) possibly explaining its voltage insensitivity. NALCN is also far less selective for Na+ ions and is permeable to Ca2+ and K+ ions. The EEKE amino acid motif in the pore filter domain of NALCN is similar to both the EEEE motif of
voltage-gated calcium channel Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (''e.g.'' muscle, glial cells, neurons) with a permeability to ...
and the DEKA motif of the voltage-gated sodium channel, possibly explaining its lack of selectivity. NALCN is not blocked by many common sodium channel blockers, including
tetrodotoxin Tetrodotoxin (TTX) is a potent neurotoxin. Its name derives from Tetraodontiformes, an Order (biology), order that includes Tetraodontidae, pufferfish, porcupinefish, ocean sunfish, and triggerfish; several of these species carry the toxin. Alt ...
. NALCN is blocked nonspecifically by both Gd3+ and
verapamil Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina (chest pain from not enough blood flow to the heart), and supraventricular tachycardia. It may also be use ...
.
Substance P Substance P (SP) is an undecapeptide (a peptide composed of a chain of 11 amino acid residues) and a type of neuropeptide, belonging to the tachykinin family of neuropeptides. It acts as a neurotransmitter and a neuromodulator. Substance P ...
and
neurotensin Neurotensin is a 13 amino acid neuropeptide that is implicated in the regulation of luteinizing hormone and prolactin release and has significant interaction with the dopaminergic system. Neurotensin was first isolated from extracts of bovine ...
both activate
Src family kinase Src kinase family is a family of non-receptor tyrosine kinases that includes nine members: Src (gene), Src, YES1, Yes, FYN, Fyn, and FGR (gene), Fgr, forming the SrcA subfamily, Lck, HCK, Hck, Tyrosine-protein kinase BLK, Blk, and Lyn (Src fam ...
s through their respective GPCRs (independent of the coupled G-proteins) which in turn increase the permeability of NALCN through UNC80 activation.
Acetylcholine Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
can also increase NALCN activity through M3 muscarinic acetylcholine receptors. Higher levels of extracellular Ca2+ decrease the permeability of NALCN by activating CaSR which inhibits UNC80.


Protein Complex

NALCN complexes with the proteins UNC79, UNC80, and FAM155A. UNC79 appears to be linked to membrane stability of NALCN and linkage with UNC 80. UNC80 mediates chemical modulation of NALCN through multiple pathways. FAM155A helps protein folding in the endoplasmic reticulum, chaperones transport to the axon, and contributes to membrane stability.


Biological function

The
resting membrane potential The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The re ...
of a neuron is usually -60mV to -80mV, driven primarily by the K+ potential at -90mV. The depolarization from the K+ potential is due primarily to a small Na+ leak current. About 70% of this current is through NALCN. Increasing NALCN permeability lowers the resting membrane potential, bringing it closer to the trigger of an action potential (-55mV), thus increasing the excitability of a neuron.


Role in pathology

Mutations to NALCN lead to severe disruptions to respiratory rhythm in mice and altered circadian locomotion in flies. Mutations to NALCN have also been linked to multiple severe developmental disorders and cervical dystonia. Schizophrenia and bipolar disorder are also linked to mutations to NALCN.


pH modulation

Changes in blood and tissue pH accompany physiological and pathophysiological conditions such as exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.


Molecular mechanisms of proton block

Single channel data from cardiomyocytes have shown that protons can decrease the conductance of individual sodium channels. The sodium channel selectivity filter is composed of a single residue in each of the four pore-loops of the four functional domains. These four residues are known as the DEKA motif. The permeation rate of sodium through the sodium channel is determined by a four carboxylate residues, the EEDD motif, which make up the outer charged ring. The protonation of these carboxylates is one of the main drivers of proton block in sodium channels, although there are other residues that also contribute to pH sensitivity. One such residue is C373 in the cardiac sodium channel which makes it the most pH-sensitive sodium channel among the sodium channels that have been studied to date.


pH modulation of sodium channel gating

As the cardiac sodium channel is the most pH-sensitive sodium channel, most of what is known is based on this channel. Reduction in extracellular pH has been shown to depolarize the voltage-dependence of activation and inactivation to more positive potentials. This indicates that during activities that decrease the blood pH, such as exercising, the probability of channels activating and inactivating is higher more positive membrane potentials, which can lead to potential adverse effects. The sodium channels expressed in skeletal muscle fibers have evolved into relatively pH-insensitive channels. This has been suggested to be a protective mechanism against potential over- or under-excitability in skeletal muscles, as blood pH levels are highly susceptible to change during movement. Recently, a mixed syndrome mutation that causes periodic paralysis and myotonia in the skeletal sodium channel has been shown to impart pH-sensitivity in this channel, making the gating of this channel similar to that of the cardiac subtype.


pH modulation across the subtypes studied thus far

The effects of protonation have been characterized in Nav1.1–Nav1.5. Among these channels, Nav1.1–Nav1.3 and Nav1.5 display depolarized voltage-dependence of activation, while activation in Nav1.4 remains insensitive to acidosis. The voltage-dependence of steady-state fast inactivation is unchanged in Nav1.1–Nav1.4, but steady-state fast inactivation in Nav1.5 is depolarized. Hence, among the sodium channels that have been studied so far, Nav1.4 is the least and Nav1.5 is the most proton-sensitive subtypes.


See also

* * * * * *


References


External links

* * {{ion channel modulators Electrophysiology Integral membrane proteins Sodium channels