Singular Point Of An Algebraic Variety
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, a singular point of an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth. The concept is generalized to smooth schemes in the modern language of scheme theory.


Definition

A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in
differential calculus In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. ...
, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may not be defined in the standard way, either because it does not exist or a special definition must be provided. In general for a hypersurface :F(x,y,z,\ldots) = 0 the singular points are those at which all the
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
s simultaneously vanish. A general
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
being defined as the common zeros of several
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s, the condition on a point of to be a singular point is that the Jacobian matrix of the first-order partial derivatives of the polynomials has a rank at that is lower than the rank at other points of the variety. Points of that are not singular are called non-singular or regular. It is always true that almost all points are non-singular, in the sense that the non-singular points form a set that is both open and dense in the variety (for the Zariski topology, as well as for the usual topology, in the case of varieties defined over the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s). In case of a real variety (that is the set of the points with real coordinates of a variety defined by polynomials with real coefficients), the variety is a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
near every regular point. But it is important to note that a real variety may be a manifold and have singular points. For example the equation defines a real analytic manifold but has a singular point at the origin. This may be explained by saying that the curve has two complex conjugate branches that cut the real branch at the origin.


Singular points of smooth mappings

As the notion of singular points is a purely local property, the above definition can be extended to cover the wider class of smooth mappings (functions from to where all derivatives exist). Analysis of these singular points can be reduced to the algebraic variety case by considering the jets of the mapping. The th jet is the Taylor series of the mapping truncated at degree and deleting the constant term.


Nodes

In classical algebraic geometry, certain special singular points were also called nodes. A node is a singular point where the Hessian matrix is non-singular; this implies that the singular point has multiplicity two and the tangent cone is not singular outside its vertex.


See also

* Milnor map *
Resolution of singularities In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety ''V'' has a resolution, which is a non-singular variety ''W'' with a Proper morphism, proper birational map ''W''→''V''. For varieties ov ...
* Singular point of a curve *
Singularity theory In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it ...
* Smooth scheme * Zariski tangent space


References

{{reflist Algebraic varieties Singularity theory