Method
In shock-capturing methods, the governing equations of inviscid flows (i.e. Euler equations) are cast in conservation form and any shock waves or discontinuities are computed as part of the solution. Here, no special treatment is employed to take care of the shocks themselves, which is in contrast to the shock-fitting method, where shock waves are explicitly introduced in the solution using appropriate shock relations ( Rankine–Hugoniot relations). The shock waves predicted by shock-capturing methods are generally not sharp and may be smeared over several grid elements. Also, classical shock-capturing methods have the disadvantage that unphysical oscillations (Euler equations
The Euler equations are the governing equations for inviscid flow. To implement shock-capturing methods, the conservation form of the Euler equations are used. For a flow without external heat transfer and work transfer (isoenergetic flow), the conservation form of the Euler equation inClassical and modern shock capturing methods
From a historical point of view, shock-capturing methods can be classified into two general categories: classical methods and modern shock capturing methods (also called high-resolution schemes). Modern shock-capturing methods are generally upwind biased in contrast to classical symmetric or central discretizations. Upwind-biased differencing schemes attempt to discretize hyperbolic partial differential equations by using differencing based on the direction of the flow. On the other hand, symmetric or central schemes do not consider any information about the direction of wave propagation. Regardless of the shock-capturing scheme used, a stable calculation in the presence of shock waves requires a certain amount of numerical dissipation, in order to avoid the formation of unphysical numerical oscillations. In the case of classical shock-capturing methods, numerical dissipation terms are usually linear and the same amount is uniformly applied at all grid points. Classical shock-capturing methods only exhibit accurate results in the case of smooth and weak shock solutions, but when strong shock waves are present in the solution, non-linear instabilities and oscillations may arise across discontinuities. Modern shock-capturing methods usually employ nonlinear numerical dissipation, where a feedback mechanism adjusts the amount of artificial dissipation added in accord with the features in the solution. Ideally, artificial numerical dissipation needs to be added only in the vicinity of shocks or other sharp features, and regions of smooth flow must be left unmodified. These schemes have proven to be stable and accurate even for problems containing strong shock waves. Some of the well-known classical shock-capturing methods include the MacCormack method (uses a discretization scheme for the numerical solution of hyperbolic partial differential equations), Lax–Wendroff method (based on finite differences, uses a numerical method for the solution ofReferences
Books
* Anderson, J. D., "Modern Compressible Flow with Historical Perspective", McGraw-Hill (2004). *Hirsch, C., "Numerical Computation of Internal and External Flows", Vol. II, 2nd ed., Butterworth-Heinemann (2007). *Laney, C. B., "Computational Gasdynamics", Cambridge Univ. Press 1998). * LeVeque, R. J., "Numerical Methods for Conservation Laws", Birkhauser-Verlag (1992). *Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., "Computational Fluid Dynamics and Heat Transfer", 2nd ed., Taylor & Francis (1997). *Toro, E. F., "Riemann Solvers and Numerical Methods for Fluid Dynamics", 2nd ed., Springer-Verlag (1999).Technical papers
*Boris, J. P. and Book, D. L., "Flux-Corrected Transport III. Minimal Error FCT Algorithms", J. Comput. Phys., 20, 397–431 (1976). * Colella, P. and Woodward, P., "The Piecewise parabolic Method (PPM) for Gasdynamical Simulations", J. Comput. Phys., 54, 174–201 (1984). * Godunov, S. K., "A Difference Scheme for Numerical Computation of Discontinuous Solution of Hyperbolic Equations", Mat. Sbornik, 47, 271–306 (1959). * Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws", J. Comput. Phys., 49, 357–293 (1983). *Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., "Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III", J. Comput. Phys., 71, 231–303 (1987). * Jameson, A. and Baker, T., "Solution of the Euler Equations for Complex Configurations", AIAA Paper, 83–1929 (1983). *MacCormack, R. W., "The Effect of Viscosity in Hypervelocity Impact Cratering", AIAA Paper, 69–354 (1969). * Roe, P. L.,