
The Shields formula is a formula for the stability calculation of granular material (
sand
Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a soil texture, textur ...
,
gravel
Gravel is a loose aggregation of rock fragments. Gravel occurs naturally throughout the world as a result of sedimentary and erosive geologic processes; it is also produced in large quantities commercially as crushed stone.
Gravel is classif ...
) in running water.
The stability of granular material in flow can be determined by the Shields formula or the
Izbash formula. The first is more suitable for fine grain material (such as
sand
Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a soil texture, textur ...
and
gravel
Gravel is a loose aggregation of rock fragments. Gravel occurs naturally throughout the world as a result of sedimentary and erosive geologic processes; it is also produced in large quantities commercially as crushed stone.
Gravel is classif ...
), while the Izbash formula is more suitable for larger stone. The Shields formula was developed by
Albert F. Shields (1908-1974). In fact, the Shields method determines whether or not the soil material will move. The Shields parameter thus determines whether or not there is a beginning of movement.
[
]
Derivation
Movement of (loose grained) soil material occurs when the shear pressure exerted by the water on the soil is greater than the resistance the soil provides. This dimensionless ratio (the
Shields parameter The Shields parameter, also called the Shields criterion or Shields number, is a nondimensional number used to calculate the initiation of motion of sediment in a fluid flow. It is a nondimensionalization of a shear stress
Shear stress, often d ...
) was first described by Albert Shields and reads:
:
,
in which is
*
the critical bottom shear stress;
*
is
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
of sediment;
*
is the density of water;
*
is the acceleration of
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
;
*
is the diameter of the sediment.
The shear stress that works on the bottom (with a normal uniform flow along a slope) is:
:
In which is
*
the shear tension exerted by the flow on the bed;
*
is the water depth;
*
is the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
(= the slope of the current).
Important to realise is that
is the shear stress exerted by the flow (i.e. a property of the flow) and
shear stress at which the grains move (i.e. a property of the grains).
The shear stress velocity is often used instead of the shear stress:
:
The shear stress velocity has the dimension of a velocity (m/s), but is actually a representation of the shear stress. So the shear stress velocity can never be measured with a velocity meter.
By using the shear stress velocity, the Shields parameter can also be written as:
:
where:
*
is the dimensionless grainsize
Shields found that the parameter
is a function of
, in which
is the kinematic
viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
Viscosity quantifies the inte ...
. This parameter is also called the granular
reynolds number:
:
Shields has performed tests with grains of different densities, and the found value of
plotted as a function of
. This led to the above graph.
Van Rijn found that instead of the granular reynolds number a dimensionless grain size could be used:
:
Because usually the values of
are quite constant, the true grain size can also be set on the horizontal axis (see right figure b). This means that the value of
is only a function of the grain diameter and can be read directly.

.
From this follows that for grains greater than 5 mm the Shields parameter gets a constant value of 0,055.
The gradient of a river (''I'') can be determined by
Chézy formula:
:
in which
= the coefficiënt of Chézy (m
½/s); This is often in the order 50 (m½/s). For a flat bed (i.e. without ripples) C can be approximated with:
:
[ ]
By introducing this into the stability formula, a critical grain size formula is found at a given flow rate:
:
In this form, the stability relationship is usually called the “Shields formula”.
Definition of "incipient motion"
The line of Shields (and of Van Rijn) in the graph is the separation between “movement” and “no movement”. Shields has defined as “movement” that almost all grains move on the bottom. This is a useful definition for defining the beginning of sand transport by flow. However, if one wants to protect a bed from erosion, the requirement is that grains should hardly move. To make this operational, Breusers defined 7 phases of movement in 1969:
# Every now and then a moving stone
# Frequent movement in some places
# Frequent movement in several places
# Frequent movement in many places
# Continuous movement at all points
# Transport of all grains at the bottom
These phases are shown in the figure below:

Visually, these phases are also shown in a series of short video clips.
In these video fragments, “no” is the Shields parameter used.
In practice, this means that for bed protections (where the grain is always larger than 5mm), a design value of Ψ=0.03 must be used.
Calculation Example
Question: At what speed of flow does sand of 0.2cm move at a water depth of 1m?
:The Chézy value then becomes ''C'' = 62 (this is a high value, so a smooth soil; This is because we assume there are no ridges). Filled in this gives a speed of 0.83 m/s.
Question: What stone size is needed to defend this soil against a current of 2 m/s?
:This cannot be solved directly, first an assumption must be made for the ''d''. Take a stone size of 5cm. That gives a Chézy value of 37. When this is entered in the Shields formula it gives a stone size of 5.7cm. The 5cm was a little too small. By trying, a stone size of 6.5cm is finally found. (In this case,
Izbash’s formula gives 6.3cm)
Restrictions
The Shields approach is based on a uniform, permanent flow with a turbulence generated by the bed roughness (i.e. no additional turbulence by a for example a propeller current). In the case of a rough bed in shallow water, and in case of unusual turbulence, the
Izbash's formula is therefore more recommended.
[
]
References
{{Reflist
Hydrology
Geomorphology
Curves
Rivers
Sedimentology