HOME

TheInfoList



OR:

In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A.


Notation and terminology

Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols.


Definition

The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The number 9 is in the intersection of the set of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s and the set of odd numbers , because 9 is not prime.


Intersecting and disjoint sets

We say that if there exists some x that is an element of both A and B, in which case we also say that . Equivalently, A intersects B if their intersection A \cap B is an , meaning that there exists some x such that x \in A \cap B. We say that if A does not intersect B. In plain language, they have no elements in common. A and B are disjoint if their intersection is empty, denoted A \cap B = \varnothing. For example, the sets \ and \ are disjoint, while the set of even numbers intersects the set of multiples of 3 at the multiples of 6.


Algebraic properties

Binary intersection is an associative operation; that is, for any sets A, B, and C, one has A \cap (B \cap C) = (A \cap B) \cap C.Thus the parentheses may be omitted without ambiguity: either of the above can be written as A \cap B \cap C. Intersection is also commutative. That is, for any A and B, one hasA \cap B = B \cap A. The intersection of any set with the empty set results in the empty set; that is, that for any set A, A \cap \varnothing = \varnothing Also, the intersection operation is idempotent; that is, any set A satisfies that A \cap A = A. All these properties follow from analogous facts about logical conjunction. Intersection distributes over union and union distributes over intersection. That is, for any sets A, B, and C, one has \begin A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \end Inside a universe U, one may define the complement A^c of A to be the set of all elements of U not in A. Furthermore, the intersection of A and B may be written as the complement of the union of their complements, derived easily from De Morgan's laws:A \cap B = \left(A^ \cup B^\right)^c


Arbitrary intersections

The most general notion is the intersection of an arbitrary collection of sets. If M is a nonempty set whose elements are themselves sets, then x is an element of the of M if and only if for every element A of M, x is an element of A. In symbols: \left( x \in \bigcap_ A \right) \Leftrightarrow \left( \forall A \in M, \ x \in A \right). The notation for this last concept can vary considerably. Set theorists will sometimes write "\cap M", while others will instead write "\cap_ A". The latter notation can be generalized to "\cap_ A_i", which refers to the intersection of the collection \left\. Here I is a nonempty set, and A_i is a set for every i \in I. In the case that the index set I is the set of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s, notation analogous to that of an infinite product may be seen: \bigcap_^ A_i. When formatting is difficult, this can also be written "A_1 \cap A_2 \cap A_3 \cap \cdots". This last example, an intersection of countably many sets, is actually very common; for an example, see the article on σ-algebras.


Nullary intersection

Note that in the previous section, we excluded the case where M was the empty set (\varnothing). The reason is as follows: The intersection of the collection M is defined as the set (see
set-builder notation In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining ...
) \bigcap_ A = \. If M is empty, there are no sets A in M, so the question becomes "which x's satisfy the stated condition?" The answer seems to be . When M is empty, the condition given above is an example of a vacuous truth. So the intersection of the empty family should be the universal set (the
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures s ...
for the operation of intersection), but in standard ( ZF) set theory, the universal set does not exist. In type theory however, x is of a prescribed type \tau, so the intersection is understood to be of type \mathrm\ \tau (the type of sets whose elements are in \tau), and we can define \bigcap_ A to be the universal set of \mathrm\ \tau (the set whose elements are exactly all terms of type \tau).


See also

* * * * * * * * * * * *


References


Further reading

* * *


External links

* {{Mathematical logic Basic concepts in set theory Operations on sets Intersection