Serre's Theorem On Affineness
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
discipline of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, Serre's theorem on affineness (also called Serre's cohomological characterization of affineness or Serre's criterion on affineness) is a theorem due to
Jean-Pierre Serre Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inau ...
which gives sufficient conditions for a scheme to be
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology * Affine cipher, a special case of the more general substi ...
, stated in terms of
sheaf cohomology In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions (holes) to solving a geometric problem glob ...
. The theorem was first published by Serre in 1957.


Statement

Let be a scheme with
structure sheaf In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of ...
If: :(1) is quasi-compact, and :(2) for every quasi-coherent
ideal sheaf In algebraic geometry and other areas of mathematics, an ideal sheaf (or sheaf of ideals) is the global analogue of an ideal (ring theory), ideal in a ring (mathematics), ring. The ideal sheaves on a geometric object are closely connected to its sub ...
of -modules, , then is
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology * Affine cipher, a special case of the more general substi ...
.


Related results

* A special case of this theorem arises when is an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
, in which case the conditions of the theorem imply that is an
affine variety In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
. * A similar result has stricter conditions on but looser conditions on the cohomology: if is a quasi-separated, quasi-compact scheme, and if for any quasi-coherent sheaf of ideals of finite type, then is affine., Lemma 29.3.2.


Notes


References


Bibliography

* * * * * Theorems in algebraic geometry {{algebraic-geometry-stub