
Sequence homology is the
biological homology between
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
,
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
, or
protein sequences, defined in terms of shared ancestry in the
evolutionary history of life
The history of life on Earth traces the processes by which living and extinct organisms evolved, from the earliest emergence of life to the present day. Earth formed about 4.5 billion years ago (abbreviated as ''Ga'', for '' gigaannum'') and ...
. Two segments of DNA can have shared ancestry because of three phenomena: either a
speciation
Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
event (orthologs), or a
duplication event (paralogs), or else a
horizontal (or lateral) gene transfer event (xenologs).
Homology among DNA, RNA, or proteins is typically inferred from their
nucleotide
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
or
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
sequence similarity. Significant similarity is strong evidence that two sequences are related by evolutionary changes from a common ancestral sequence.
Alignments of multiple sequences are used to indicate which regions of each sequence are homologous.
Identity, similarity, and conservation

The term "percent homology" is often used to mean "sequence similarity”, that is the percentage of identical residues (''percent identity''), or the percentage of residues conserved with similar physicochemical properties (''percent similarity''), e.g.
leucine
Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-Car ...
and
isoleucine
Isoleucine (symbol Ile or I) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
, is usually used to "quantify the homology." Based on the definition of homology specified above this terminology is incorrect since sequence similarity is the observation, homology is the conclusion.
Sequences are either homologous or not.
[ This involves that the term "percent homology" is a misnomer.
As with morphological and anatomical structures, sequence similarity might occur because of ]convergent evolution
Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last comm ...
, or, as with shorter sequences, by chance, meaning that they are not homologous. Homologous sequence regions are also called conserved. This is not to be confused with conservation in amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
sequences, where the amino acid at a specific position has been substituted with a different one that has functionally equivalent physicochemical properties.
Partial homology can occur where a segment of the compared sequences has a shared origin, while the rest does not. Such partial homology may result from a gene fusion event.
Beyond sequence similarity
Proteins are known to conserve their tertiary structure more strongly than their amino acid sequences. Two distantly related proteins can have minimal or even undetectable sequence similarity, yet have highly similar folds that can be compared via structural alignment. Examples of these proteins used to be only discovered by experimental structual determination methods. Modern protein structure prediction methods such as AlphaFold2
AlphaFold is an artificial intelligence (AI) program developed by DeepMind, a subsidiary of Alphabet Inc., Alphabet, which performs Protein structure prediction, predictions of protein structure. It is designed using deep learning techniques.
Alp ...
allow possible homologs to be identified without wet lab work.
RNA is also known to conserve tertiary structure more strongly than primary structure. RNA secondary structure prediction was found to be helpful in human-to-mouse comparison.
Orthology
Homologous sequences are orthologous if they are inferred to be descended from the same ancestral sequence separated by a speciation
Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
event: when a species diverges into two separate species, the copies of a single gene in the two resulting species are said to be orthologous. Orthologs, or orthologous genes, are genes in different species that originated by vertical descent from a single gene of the last common ancestor
A most recent common ancestor (MRCA), also known as a last common ancestor (LCA), is the most recent individual from which all organisms of a set are inferred to have descended. The most recent common ancestor of a higher taxon is generally assu ...
. The term "ortholog" was coined in 1970 by the molecular evolution
Molecular evolution describes how Heredity, inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of Cell (biology), cells and organisms. Molecular evolution is the basis of phylogen ...
ist Walter Fitch.
For instance, the plant Flu regulatory protein is present both in ''Arabidopsis
''Arabidopsis'' (rockcress) is a genus in the family Brassicaceae. They are small flowering plants related to cabbage and mustard. This genus is of great interest since it contains thale cress (''Arabidopsis thaliana''), one of the model organ ...
'' (multicellular higher plant) and ''Chlamydomonas
''Chlamydomonas'' ( ) is a genus of green algae consisting of about 150 species of unicellular organism, unicellular flagellates, found in stagnant water and on damp soil, in freshwater, seawater, and even in snow as "snow algae". ''Chlamydom ...
'' (single cell green algae). The ''Chlamydomonas'' version is more complex: it crosses the membrane twice rather than once, contains additional domains and undergoes alternative splicing. However, it can fully substitute the much simpler ''Arabidopsis'' protein, if transferred from algae to plant genome by means of genetic engineering
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of Genetic engineering techniques, technologies used to change the genet ...
. Significant sequence similarity and shared functional domains indicate that these two genes are orthologous genes, inherited from the shared ancestor.
Orthology is strictly defined in terms of ancestry. Given that the exact ancestry of genes in different organisms is difficult to ascertain due to gene duplication
Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene ...
and genome rearrangement events, the strongest evidence that two similar genes are orthologous is usually found by carrying out phylogenetic analysis of the gene lineage. Orthologs often, but not always, have the same function.
Orthologous sequences provide useful information in taxonomic classification and phylogenetic studies of organisms. The pattern of genetic divergence can be used to trace the relatedness of organisms. Two organisms that are very closely related are likely to display very similar DNA sequences between two orthologs. Conversely, an organism that is further removed evolutionarily from another organism is likely to display a greater divergence in the sequence of the orthologs being studied.
Databases of orthologous genes and de novo orthology inference tools
Given their tremendous importance for biology and bioinformatics
Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
, orthologous genes have been organized in several specialized databases
In computing, a database is an organized collection of data or a type of data store based on the use of a database management system (DBMS), the software that interacts with end users, applications, and the database itself to capture and ana ...
that provide tools to identify and analyze orthologous gene sequences. These resources employ approaches that can be generally classified into those that use heuristic
A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless ...
analysis of all pairwise sequence comparisons, and those that use phylogenetic
In biology, phylogenetics () is the study of the evolutionary history of life using observable characteristics of organisms (or genes), which is known as phylogenetic inference. It infers the relationship among organisms based on empirical dat ...
methods. Sequence comparison methods were first pioneered in the COGs database in 1997. These methods have been extended and automated in twelve different databases the most advanced being AYbRAH Analyzing Yeasts by Reconstructing Ancestry of Homologs as well as these following databases right now. Some tools predict orthologous de novo from the input protein sequences, might not provide any Database. Among these tools are SonicParanoid and OrthoFinder.
*eggNOG
Eggnog (), historically also known as a milk punch or an egg milk punch when alcoholic beverages are added, is a rich, chilled, added sugar, sweetened, dairy-based sweetened beverage, beverage traditionally made with milk, cream, sugar, egg yolk ...
* GreenPhylDB for plants
* InParanoid focuses on pairwise ortholog relationships
OHNOLOGS
is a repository of the genes retained from whole genome duplications in the vertebrate genomes including human and mouse.
* OMA
* OrthoDB appreciates that the orthology concept is relative to different speciation points by providing a hierarchy of orthologs along the species tree.
OrthoInspector
is a repository of orthologous genes for 4753 organisms covering the three domains of life
* OrthologID
* OrthoMaM for mammals
* OrthoMCL
* Roundup
* SonicParanoid is a graph based method that uses machine learning to reduce execution times and infer orthologs at the domain level.
Tree-based phylogenetic
In biology, phylogenetics () is the study of the evolutionary history of life using observable characteristics of organisms (or genes), which is known as phylogenetic inference. It infers the relationship among organisms based on empirical dat ...
approaches aim to distinguish speciation from gene duplication events by comparing gene trees with species trees, as implemented in databases and software tools such as:
* LOFT
* TreeFam
* OrthoFinder
A third category of hybrid approaches uses both heuristic and phylogenetic methods to construct clusters and determine trees, for example:
* EnsemblCompara GeneTrees
* HomoloGene
* Ortholuge
Paralogy
Paralogous genes are genes that are related via duplication events in the last common ancestor
A most recent common ancestor (MRCA), also known as a last common ancestor (LCA), is the most recent individual from which all organisms of a set are inferred to have descended. The most recent common ancestor of a higher taxon is generally assu ...
(LCA) of the species being compared. They result from the mutation of duplicated genes during separate speciation events. When descendants from the LCA share mutated homologs of the original duplicated genes then those genes are considered paralogs.
As an example, in the LCA, one gene (gene A) may get duplicated to make a separate similar gene (gene B), those two genes will continue to get passed to subsequent generations. During speciation, one environment will favor a mutation in gene A (gene A1), producing a new species with genes A1 and B. Then in a separate speciation event, one environment will favor a mutation in gene B (gene B1) giving rise to a new species with genes A and B1. The descendants' genes A1 and B1 are paralogous to each other because they are homologs that are related via a duplication event in the last common ancestor of the two species.
Additional classifications of paralogs include alloparalogs (out-paralogs) and symparalogs (in-paralogs). Alloparalogs are paralogs that evolved from gene duplications that preceded the given speciation event. In other words, alloparalogs are paralogs that evolved from duplication events that happened in the LCA of the organisms being compared. The example above is an example alloparalogy. Symparalogs are paralogs that evolved from gene duplication of paralogous genes in subsequent speciation events. From the example above, if the descendant with genes A1 and B underwent another speciation event where gene A1 duplicated, the new species would have genes B, A1a, and A1b. In this example, genes A1a and A1b are symparalogs.
Paralogous genes can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox
A homeobox is a Nucleic acid sequence, DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of ...
( Hox) genes in animals. These genes not only underwent gene duplications within chromosome
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
s but also whole genome duplications. As a result, Hox genes in most vertebrates are clustered across multiple chromosomes with the HoxA-D clusters being the best studied.[
Another example are the ]globin
The globins are a superfamily of heme-containing globular proteins, involved in binding and/or transporting oxygen. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members include myo ...
genes which encode
The Encyclopedia of DNA Elements (ENCODE) is a public research project which aims "to build a comprehensive parts list of functional elements in the human genome."
ENCODE also supports further biomedical research by "generating community resourc ...
myoglobin
Myoglobin (symbol Mb or MB) is an iron- and oxygen-binding protein found in the cardiac and skeletal muscle, skeletal Muscle, muscle tissue of vertebrates in general and in almost all mammals. Myoglobin is distantly related to hemoglobin. Compar ...
and hemoglobin
Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
and are considered to be ancient paralogs. Similarly, the four known classes of hemoglobins ( hemoglobin A, hemoglobin A2, hemoglobin B, and hemoglobin F) are paralogs of each other. While each of these proteins serves the same basic function of oxygen transport, they have already diverged slightly in function: fetal hemoglobin (hemoglobin F) has a higher affinity for oxygen than adult hemoglobin. Function is not always conserved, however. Human angiogenin diverged from ribonuclease, for example, and while the two paralogs remain similar in tertiary structure, their functions within the cell are now quite different.
It is often asserted that orthologs are more functionally similar than paralogs of similar divergence, but several papers have challenged this notion.
Regulation
Paralogs are often regulated differently, e.g. by having different tissue-specific expression patterns (see Hox genes). However, they can also be regulated differently on the protein level. For instance, ''Bacillus subtilis
''Bacillus subtilis'' (), known also as the hay bacillus or grass bacillus, is a gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacill ...
'' encodes two paralogues of glutamate dehydrogenase: GudB is constitutively transcribed whereas RocG is tightly regulated. In their active, oligomeric states, both enzymes show similar enzymatic rates. However, swaps of enzymes and promoters cause severe fitness losses, thus indicating promoter–enzyme coevolution. Characterization of the proteins shows that, compared to RocG, GudB's enzymatic activity is highly dependent on glutamate and pH.
Paralogous chromosomal regions
Sometimes, large regions of chromosomes share gene content similar to other chromosomal regions within the same genome. They are well characterised in the human genome, where they have been used as evidence to support the 2R hypothesis. Sets of duplicated, triplicated and quadruplicated genes, with the related genes on different chromosomes, are deduced to be remnants from genome or chromosomal duplications. A set of paralogy regions is together called a paralogon. Well-studied sets of paralogy regions include regions of human chromosome 2, 7, 12 and 17 containing Hox gene
Hox genes, a subset of homeobox, homeobox genes, are a gene cluster, group of related genes that Evolutionary developmental biology, specify regions of the body plan of an embryo along the craniocaudal axis, head-tail axis of animals. Hox protein ...
clusters, collagen
Collagen () is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, making up 25% to 35% of protein content. Amino acids are bound together to form a trip ...
genes, keratin
Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. It is the key structural material making up Scale (anatomy), scales, hair, Nail (anatomy), nails, feathers, horn (anatomy), horns, claws, Hoof, hoove ...
genes and other duplicated genes, regions of human chromosomes 4, 5, 8 and 10 containing neuropeptide receptor genes, NK class homeobox genes and many more gene families
A gene family is a set of several similar genes, formed by duplication of a single original gene, and generally with similar biochemical functions. One such family are the genes for human hemoglobin subunits; the ten genes are in two clusters on ...
, and parts of human chromosomes 13, 4, 5 and X containing the ParaHox genes and their neighbors. The Major histocompatibility complex
The major histocompatibility complex (MHC) is a large Locus (genetics), locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for Cell (biology), cell surface proteins essential for the adaptive immune system. The ...
(MHC) on human chromosome 6 has paralogy regions on chromosomes 1, 9 and 19. Much of the human genome
The human genome is a complete set of nucleic acid sequences for humans, encoded as the DNA within each of the 23 distinct chromosomes in the cell nucleus. A small DNA molecule is found within individual Mitochondrial DNA, mitochondria. These ar ...
seems to be assignable to paralogy regions.
Ohnology
Ohnologous genes are paralogous gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s that have originated by a process of whole-genome duplication. The name was first given in honour of Susumu Ohno by Ken Wolfe. Ohnologues are useful for evolutionary analysis because all ohnologues in a genome have been diverging for the same length of time (since their common origin in the whole genome duplication). Ohnologues are also known to show greater association with cancers, dominant genetic disorders, and pathogenic copy number variations.
Xenology
Homologs resulting from horizontal gene transfer
Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the e ...
between two organisms are termed xenologs. Xenologs can have different functions if the new environment is vastly different for the horizontally moving gene. In general, though, xenologs typically have similar function in both organisms. The term was coined by Walter Fitch.
Homoeology
Homoeologous (also spelled homeologous) chromosomes or parts of chromosomes are those brought together following inter-species hybridization and allopolyploidization to form a hybrid genome, and whose relationship was completely homologous in an ancestral species. In allopolyploids, the homologous chromosomes within each parental sub-genome should pair faithfully during meiosis
Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one c ...
, leading to disomic inheritance; however in some allopolyploids, the homoeologous chromosomes of the parental genomes may be nearly as similar to one another as the homologous chromosomes, leading to tetrasomic inheritance (four chromosomes pairing at meiosis), intergenomic recombination, and reduced fertility.
Gametology
Gametology denotes the relationship between homologous genes on non-recombining, opposite sex chromosomes. The term was coined by García-Moreno and Mindell. 2000. Gametologs result from the origination of genetic sex determination and barriers to recombination between sex chromosomes. Examples of gametologs include CHDW and CHDZ in birds.
See also
* Deep homology
* EggNOG (database)
* Neofunctionalization
* OrthoDB
* Orthologous MAtrix (OMA)
* PhEVER
* Protein family
A protein family is a group of evolutionarily related proteins. In many cases, a protein family has a corresponding gene family, in which each gene encodes a corresponding protein with a 1:1 relationship. The term "protein family" should not be ...
* Protein superfamily
A protein superfamily is the largest grouping (clade) of proteins for which common ancestry can be inferred (see homology (biology), homology). Usually this common ancestry is inferred from structural alignment and mechanistic similarity, even if n ...
* TreeFam
* Syntelog
References
{{reflist, 30em
Evolutionary biology
Phylogenetics
Evolutionary developmental biology